Update on seeded FEL simulations with Genesis 4

Simulation parameters tests

Flattop and long gaussian pre-bunched beams

Georgi Georgiev 14 Jan 2022

Simulation parameters tests

Simulation step

bunch=1e-3

- Noticeable effect, smaller step:
 - Higher FEL output
 - Longer simulation time
- Chosen best: delz = 3 mm

delz, mm	30/2	30/4	30/8	30/16	30/32
Energy, µJ	573	620	645	663	669±15
Power, MW	72	79	81	83	83±3.6

Sample – harmonic slicing

bunch=1e-3

- Noticeable effect
 - Similar final energy (655±14 for 1, 586±3 for 5)
 - Different peak power, time profile
 - Odd trends with higher sample
- Chosen best: sample=1

Sample	1	2	3	4	5
Power, MW	82	70	62	50	40
Power x sample	82	140	186	200	200

Macro particles, radiation grid and bunching phase bunch=1e-3

- Negligible effect
- Problem with even number points

power (MW) ⁴⁰

20

- Missing central point?
- Chosen best:
 - npart=8192
 - ngrid=201
 - bunchphase=0

Flattop and long gaussian pre-bunched beams

| Update on seeded FEL simulations with Genesis 4 | G. Georgiev | PPS, 14 Jan 2022

Simulation setup

- Two current profiles scaled to 1 nC, 2nC, 4nC
- Fixed parameters: 3 THz, delz=0.003, npart=8192, delgam=0.5%, ex=4e-6, ey=4e-6, emod=0, power=0, ngrid=201
- Statistics for 100 shots
- Scan over bunching factor
- Results after end of the undulator
- NO SPACE CHARGE (Genesis 4 bug)

Radiation energy

4 nC beams

GAUSSIAN

Peak (slice) power

4 nC beams

GAUSSIAN

Bunching evolution

4 nC, 0.01 bunching factor

- SASE 4nC: saturation near undulator exit
- Pre-bunching: rapid bunching evolution
- Early saturation and overbunching
- Electrons absorb radiation
 - Analysis pending
- Odd effect: increased initial bunching
 - May result in lower efficiency
 - May impact spectrum negatively
 - But overall better stability (next slides)

Final energy vs bunching

Results summary

- Final energy rise or drop is case dependent
- Energy fluctuation decreases

Final energy fluctuation

Results summary

- Energy fluctuation decreases with increased bunching factor
 - Converges to stable energy
- Seeding effect
 - Stronger with lower peak current
 - Evident with **bunch=1e-4** and above

Arrival time jitter

- Jitter decreases with increased bunching factor
 - Converges to no jitter
- Seeding effect with **bunch=1e-4** and above
- Under 1/10 radiation period in some cases

Summary and outlook

Summary

- Investigated important simulation parameters
- Simulations with different charges and profiles
- Internal Genesis 4 pre-bunching
 - Rapid bunching development
 - Possible: radiation absorbed into the beam
 - Stability improvements for final energy and arrival time

Outlook

- Analysis of radiation fields along undulator
- Seeding by energy modulation
- Full beam (ASTRA) import to Genesis 4
- DPG 2022

Thank you!