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Concept



Multiple Scattering & Material Budget

* High-energy particles undergo multiple Coulomb scattering when
traversing material

— Particle is deflected

* Scattering angle distribution:
Gaussian-like center with tails at larger angles
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* Width of Gaussian-like center well predicted by the Highland formula:
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* Measurement: Scattering angle distribution
Characteristic quantity: Material budget
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The Work so Far



Track-based Multiple Scattering Tomography

* Single-particle tracking before and after the sample under test (SUT)
using so-called beam telescopes — multi-plane (silicon) tracking detectors

* Measurement of the scattering angle at the SUT

* Extrapolation of the track to the position of the sample M26 planes 0 1
SUT

* Four steps:
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- Measure the hits in the pixel ) e R 1H ) B
sensor planes around it < il o
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- Extract the width of the kink angle distribution ' ' ' L ' ' ' >
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Measurement Setup

Accelerator, beam line & beam telescope

* DESY Il Test Beam

— Positron or electron beams created from primary bunch via
bremsstrahlung / pair conversion target

- Beam energy: 1-6 GeV
- Particle rate: < 50 kHz
(energy dependent)

— Three beam lines available, all equipped with...

* Beam telescopes

- Six Mimosa26 MAPS sensors

-y

- Pixel Pitch: 18.4 um x 18.4 um W‘\\

— Active area: 10.6 mm x 21.2 mm

— Intrinsic sensor resolution: > 3.24 um

* Track resolution at SUT: O~2um
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Track Reconstruction & Material Budget Estimators

Combining robustness with contrast T ar T air |

* Track model needs to allow kinks at scatterers

— Using General Broken Lines

— Find the most probable trajectory
based on the measured hits

— Uncertainties weighted with (known) detector materials
to include multiple scattering in telescope

Measurement and scatterer

— Kink angle at the sample:
Local, unbiased parameter in the track model

Scatterer
Unbiased kink

— Volume scatterer approximated by two thin scatterers

— Aluminium

— Air

* Estimator for distribution width not straight forward
— Gaussian shape only approximation
— Need statistically robust method with high sensitivity for good contrast ,_

— E.g. Average Absolute Deviation of the inner 90% quantile

—b

* Many more parameters: voxel size, required statistics -
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Image Reconstruction

2D measurement of the scatterer material budget

* [llumination of the scatterer,
reconstruction of individual particle tracks

-3 -2 -1 0 1 2 3 4

* Division of the image plane (SUT) into regions (pixels)

* Calculation of scattering angle for every track,
determination of scattering angle distribution width
individually for each pixel

* Calibration of the scattering width to material budget \
using known-thickness known-material scatterers

* Result: projection of the material budget
Data & simulation compare very well

* Material budget of LHC tracking detector layers
(CMS & ATLAS upgrades, complex CF with glue)
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First Applications in High-Energy Physics

Measurement of detector structures & comparison with simulations

* CMS Phase Il Tracker Upgrade
- CF foam with cooling pipe & face sheets

— Glue layers visible in material budget

y [mm]

* ATLAS ITk Upgrade
- Measurement of endcap petal structures

- PCBs, CF honeycomb structure
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* Belle-ll Silicon Vertex Detector

— Comparison of material budget measurement
with detailed simulations
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3D Computed Tomography

Sinogram

Reconstruct the 3@ dimension from repeated measure 350

Reconstruction
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* Perform inverse radon transform to reconstruct 20
internal material budget distribution
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* Repeated projection measurement at different angles :ZE
* Generate sinogram from individual images ‘$:22
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— Computed tomography
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3D Images: Animations

Computed tomography via scattering distribution of electrons
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Comparison: X-Ray CT

Pros and cons to conventional computed tomography

* X-rays attenuation length significantly shorter than
radiation length of high-energy particles — example: Lead

— X-ray attenuation length:
~0.1 mm (50 keV) / ~0.7 mm (200 keV)

- Radiation length (GeV electrons): 5.6 mm

* GeV electrons can serve as probe for thicker materials

* High-Z materials can be probed with high precision

— Simulation: after calibrating for material,
even higher contrast achieved for lead samples than aluminum

* Strongly reduced beam hardening effects
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Status Quo

* Reconstruction of 3D material structure using multiple scattering distributions achieved,
both from simulation and measured data

* Computed tomography achieves good contrast, better for larger material budget
* Acceptance area limited to telescope sensors to ~1 cm x 2 cm

* Limited by statistics
— Individual particle tracking

— Measurement time for one sample ~ 3 days

* With faster response, could this method be of broader interest?
* Industrial & clinical applications / diagnosis tool?

* Can we decrease measurement time by orders of magnitude?
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A New Approach



Intensity-Based Measurements

* Up till now, particle track position used to identify relevant pixel / voxel of final image

* Turning things around:
use pencil beam to raster the sample, beam position dictates voxel size & position

* Single detector records absolute beam size after scattering as function of the position,
Single-shot many-particle measurement of scattering width

* Requirements:
—  Well-controlled, small beam spot @ sample
— Controlled relative movement beam < sample
— High repetition rate for fast image recording

— Fast detectors with large dynamic range

@ DESY:
PITZ — Zeuthen
ARES — Hamburg
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Noise performance
- Noise (x12.4 keV)
Poisson limit

Detector Options

Noise (x12.4 keV)

-
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- AGIPD

* Large area i ———
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High dynamic range, if functioning in adaptive gain mode

* Available on loan by developers @ DESY FS
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* Requires implementation of data acquisition

*  Timepix3
* Smaller area
* Lower, but tolerable dynamic range
* Available at almost any time @ DESY FH
* Data acquisition ready

— Suitable candidate for proof-of-principle measurements
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22 MeV, 1000 electrons
100 um transverse size
plexiglass cylinder, 3mm rad.

Scattering Distribution & Sample Distance
Allpix? Simulations with AGIPD Sensor Geometry
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Summary



Summary & Outlook

Single-particle tracking e-CT shown to perform well
— Simulation, calibration, data taking performed at DESY Il synchrotron beam lines
— Already used by high-energy physics experiments to measure detector component properties

— Measurement time prohibitively long for wider application in industry / medical applications

Novel approach using one-shot intensity-based scattering measurements
- Reduces required measurement time by orders of magnitude
— Rastering of sample either by beam or by motion stage

— Single detector record widened beam after scattering interaction in sample

Simulations & detector / DAQ preparations ongoing, funding application for postdoc & PhD student pending

We are hoping for some first beam time in 2022!
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Open Questions / Beam Requirements / ...

* How can we synchronize with the accelerator?
Bunch clock?

Beam conditions:
- How does rastering work? Area, stepping, ...?
— Minimal possible bunch current?

— Transverse bunch size at focal plane?

Counting room, space for detector DAQ & infrastructure?

General logistics
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Thank you



Contact

DESY. Deutsches Simon Spannagel

Elektronen-Synchrotron FH-ATLAS
Simon.spannagel@desy.de

www.desy.de +49-40-8998-2794
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