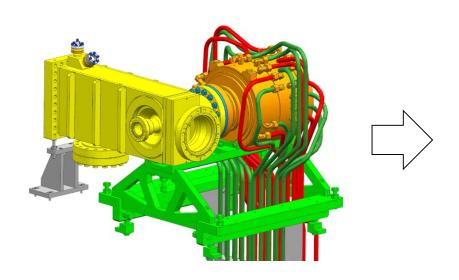
Updated physical design of an L band normal conducting RF gun towards 2% duty cycle

RF pulse length 2 ms / 10 Hz for PITZ

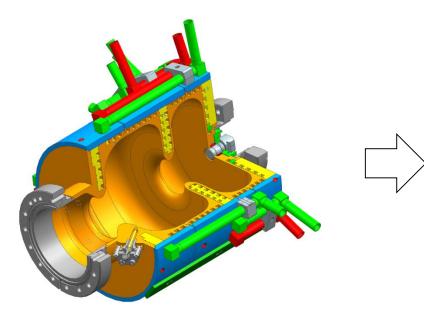
G. Shu

2021.12.16



Outline

- Motivation
- New gun design for PITZ
 - RF simulation
 - Dark current consideration
 - Beam dynamics optimization
 - Mechanical design and simulation
- Summary and outlook


DESY. PITZ
Page 2 / 18

Motivation

Gun 4

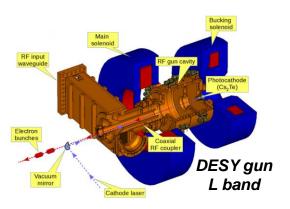
RF pulse 650 us / 10 Hz (0.65% duty cycle) Average power = 40 kW

Gun 5

RF pulse 1000 us / 10 Hz (1% duty cycle)

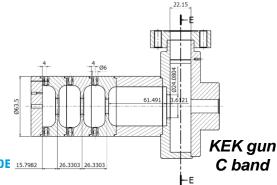
Average power = 60 kW

New gun


Similar beam performance RF pulse 2000 us / 10 Hz (2% duty cycle)

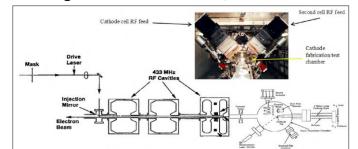
DESY. PITZ
Page 3 / 18

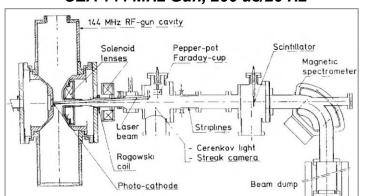
Two cavity shapes commonly used: pillbox & reentrant


Pillbox cavity

- High RF frequency (L / S / C / X band), low duty factor
- High RF breakdown threshold, high cathode gradient (> 60 MV/m), MeV beam, pancake beam w/o buncher system
- Low duty factor (< 1%) due to thermal heating
- Less radial field distortion ($E_r \& B_{\phi}$)

X band

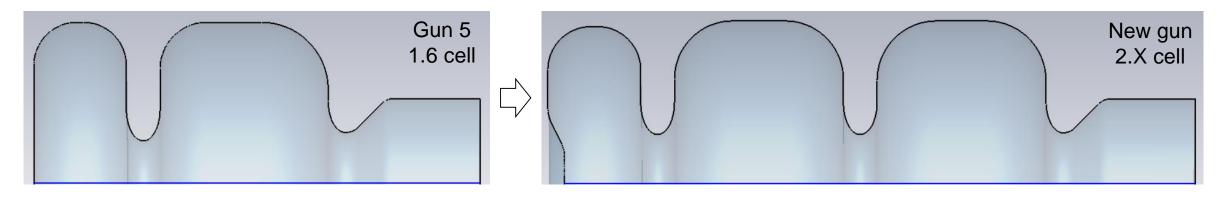


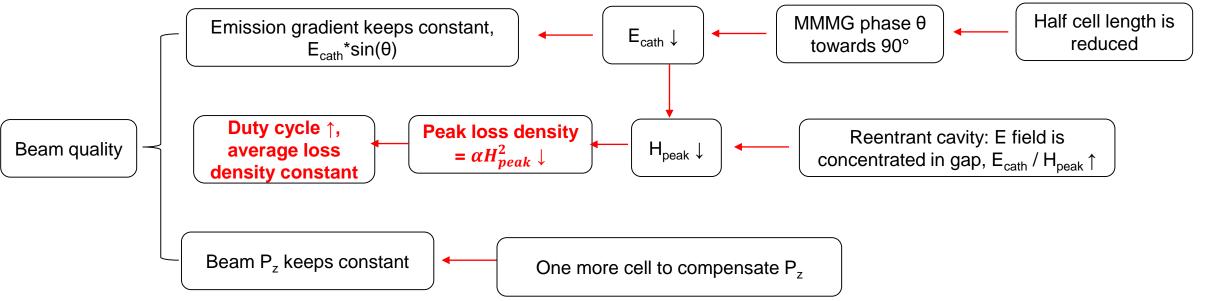

Reentrant cavity

- Widely adopted at high duty cycle guns
 - Low frequency → large surface of cooling
 - High shunt impedance per unit length → high Ez/Pc
 - Low cathode gradient (~20 MV/m) and voltage, keV -MeV beam, cigar beam w/ buncher system
 - Higher radial field distortion


Boeing/LANL 433 MHz Gun, 8300 us/30 Hz

CEA 144 MHz Gun, 200 us/20 Hz


APEX 187 MHz Gun, CW


APEX-II 162.5 MHz Gun, CW

Basic idea: a combination of reentrant cavity + pillbox cavity

Cathode cell has a nose cone

DESY. PITZ
Page 5 / 18

State of the art

Figure 1. Solid model of proposed three-cell RF gun with

solenoid compensation coils and power couplers.

• R.A. Rimmer proposed an L band RF photocathode gun (EPAC 2002), duty factor 5%, individual RF power coupling

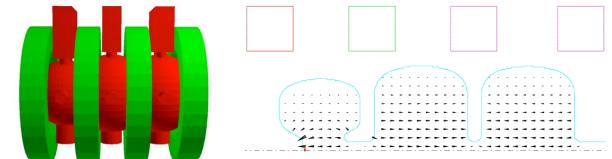
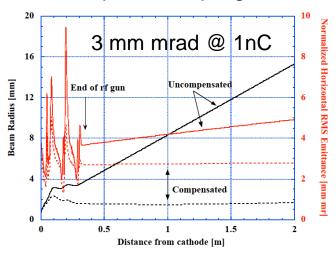



Figure 2. Profile of 3-cell RF gun showing MAFIA calculated electric fields and position of solenoid coils.

	Gun cell	Cell 2 & 3
Frequency	1.3 GHz	1.3 GHz
Rep. rate	10 kHz	10 kHz
Duty factor	~5%	~5%
E _o	64 MV/m	43 MV/m
P _{peak}	581 kW	1550 kW
Paverage	29 kW	77.5 kW
P _{dens max}	110 W/cm ²	107 W/cm ²

S.P. Antipov proposed a compact X band 1 MeV electron linac for medical & industrial applications (NAPAC 2019)

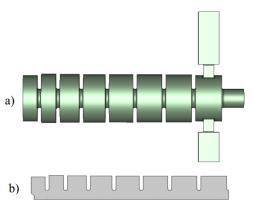
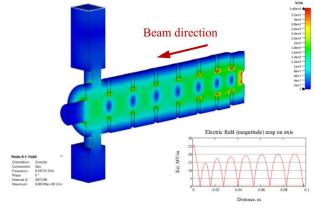


Figure 1: 8 cell SW accelerating cavity design with input waveguide coupler and waveguide dump: a) 3D model; b) accelerating cell's shape.



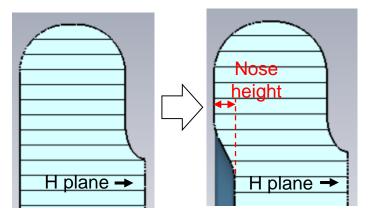
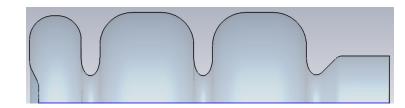
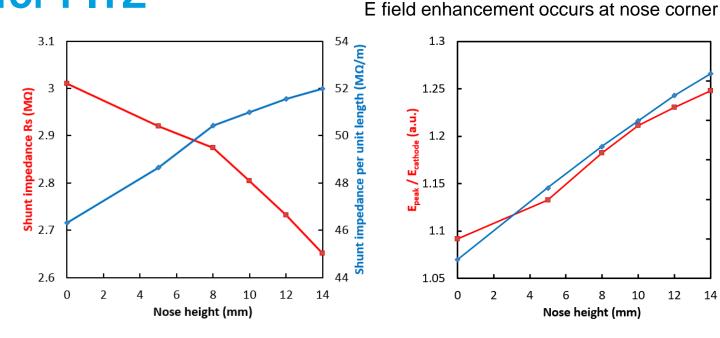
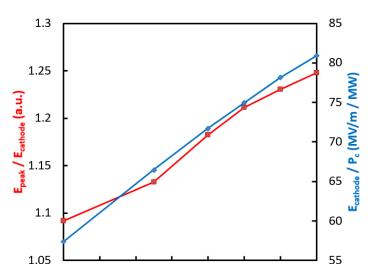

Figure 2: The π mode electric field map in the 8-cell 9.4 GHz accelerating cavity.

Table 1: Main 1 MeV Accelerator Parameters				
Operation frequency	9430 MHz			
RF source	Magnetron			
RF power	203 kW			
Peak surface electric field	23 MV/m			
Accelerating cavity length	111 mm			
Shunt impedance	4.7 MOhm			
Input beam energy	20 keV			
Output beam energy	1 MeV			


DESY. PITZ
Page 6 / 18

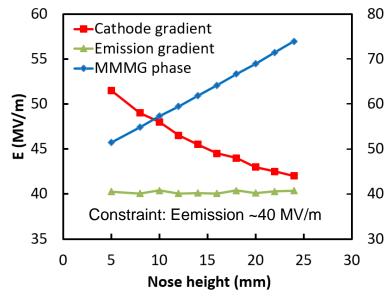
RF design of a new gun for PITZ

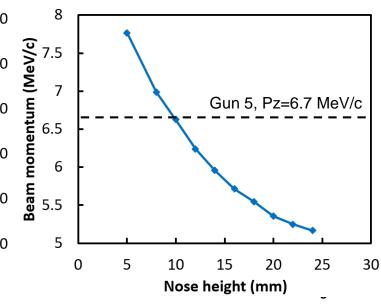

- Modified cathode cell (pillbox → reentrant)
 - Cathode cell radius → tune cavity frequency



2.X cell RF gun

- Iris radius is enlarged (25 mm \rightarrow 29 mm) to maintain similar mode separation (~5 MHz), stronger RF defocusing
- Emission gradient ~ 40 MV/m, similar to Gun 5
- Nose height = 10 mm, gun beam momentum similar to Gun 5 (6.7 MeV/c)



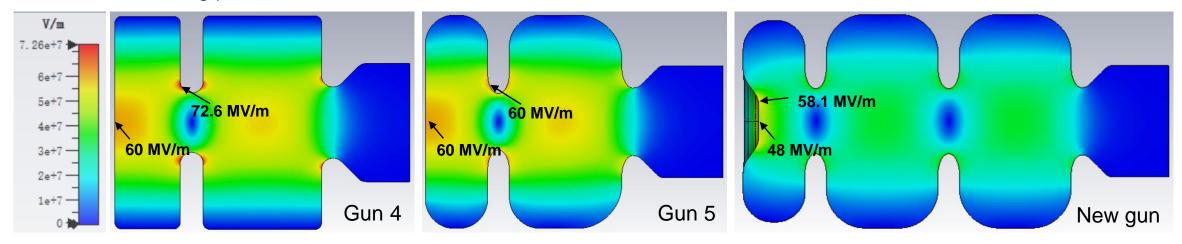


Nose height (mm)

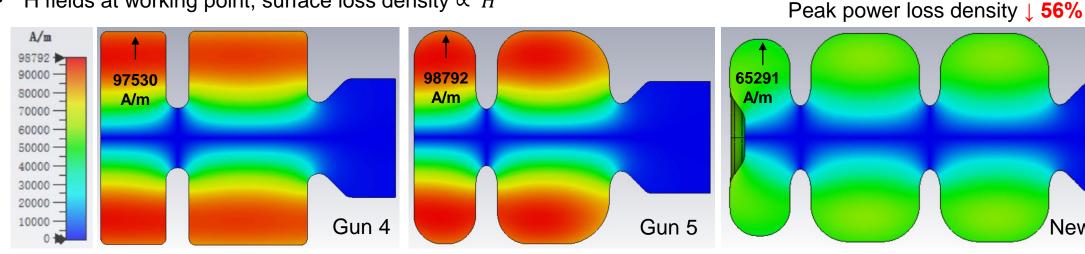
12

14

RF properties


The beam in gun 4 is accelerated to 6 MeV more quickly than new gun \rightarrow beam quality degradation? Need beam dynamics study.

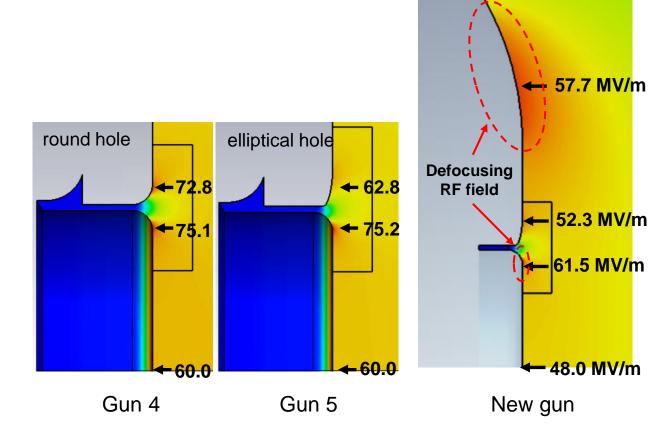
Z (m)


	Gun 4	Gun 5	New gun
Mode separation (MHz)	5.1	6.1	5.4
Cathode E (MV/m)	60	60	48 (↓ 20%)
Field balance	~1.05 : 1	~1.05 : 1	1.29 : 1
Beam kinetic energy (MeV)	6.1	6.1	6.1
Peak surface E (MV/m)	72.6	60	58.1
Peak surface H (A/m)	97530	98792	65291
Peak RF power (MW)	6.03	5.70	3.71 (↓ 35%)
Unload Q0	23220	25448	27384
Peak surface loss density (W/cm2)	4475	4594	2005 (↓ 56%)
RF pulse duration (us)	650	1000	2000
Pulsed heating (degC)	35.1	44.6	39.0
RF pulse rep-rate (Hz)	10	10	10
Average surface loss density (W/cm2)	29.1	45.9	40.1
Average power loss (kW)	39.2	57.0	74.3 (↑ 30%)
Power loss in each cell (kW)	17.8 / 21.1	26.4 / 30.7	20.1 / 27.3 / 26.9

Gun 4, Gun 5 and new gun, E & H field maps

E fields at working point

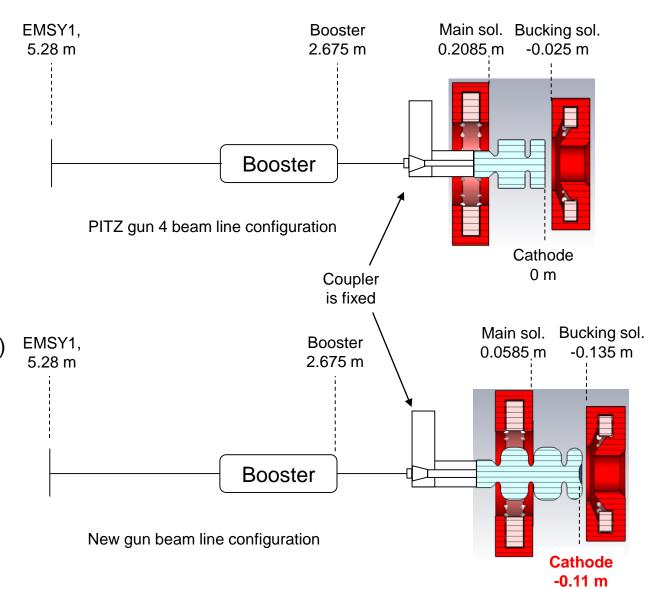
H fields at working point, surface loss density $\propto H^2$



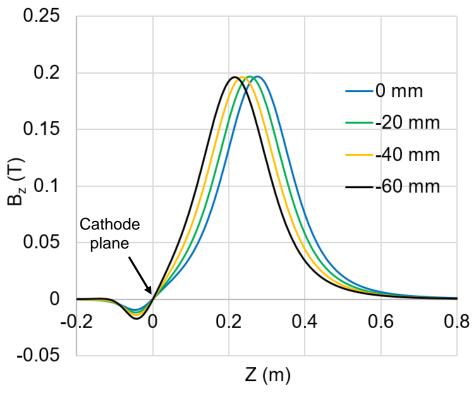
DESY. PITZ Page 9 / 18

New gun

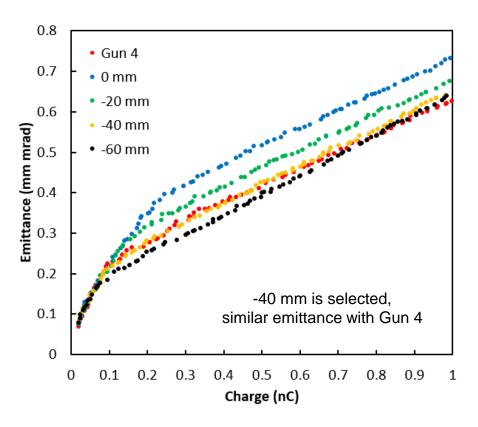
Considerations on dark current


- Plug vicinity: round plug corner + elliptical hole, similar dimensions with Gun 5
 - Surface E field strength is lower than Gun 5, lower field emission strength
 - E field enhancement appears at plug corner and nose cone.
 Defocusing RF field, low dark current transmit ratio
 - Gun 4 (650 us / 10 Hz / 60 MV/m)
 - Dark current in one RF macro pulse~100 uA
 - Average dark current ~650 nA
 - Gun 5 (1000 us / 10 Hz / 60 MV/m)
 - In RF conditioning stage, seems much lower dark current from image, dark current measurement ongoing
 - New gun (2000 us / 10 Hz / 48 MV/m)
 - If dark current of Gun 5 in measurement < 30 uA, average dark current is < 300 nA
 - With a much lower E field, the expected average dark current of new gun << 600 nA, smaller than Gun 4

DESY. PITZ Page 10 / 18


Beam dynamics optimization based on PITZ beam line

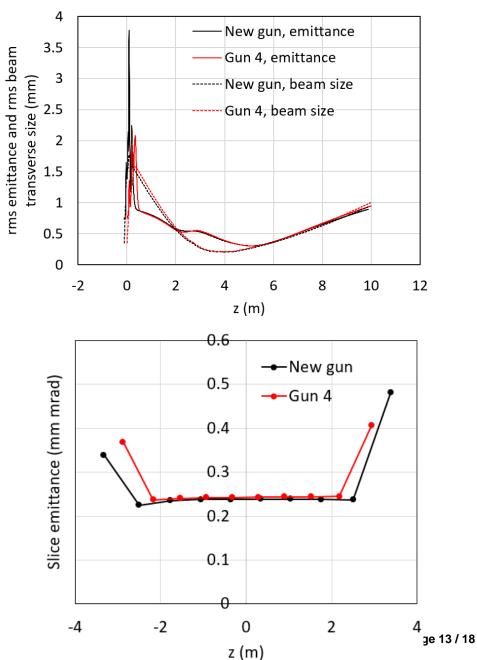
- Minor change to existing beam line
 - RF gun is the only device needs to be replaced
 - Gun waveguide, booster and bean line diagnostics keep unchanged
 - Gun, solenoids and loadlock system move towards upstream by 0.12 m (1 cell length)
 - Distance between main solenoid and cathode plane is reduced by 0.04 m (better emittance compensation)
- Beam dynamics optimizations
 - Laser transverse homogenous; longitudinal flat top 2 / 21.5 \ 2 ps
 - Cs₂Te cathode, thermal emittance 0.847 um/mm (0.55 eV)
 - ASTRA + Multi-Objective Genetic Algorithm (MOGA)
 - $E_{cath} = 48 \text{ MV/m}$
 - Variables: (1) laser transvers size, (2) gun phase, (3) solenoid
 Bz, (4) solenoid position, (5) booster Ez
 - Objective: minimal projected emittance at EMSY1


Main solenoid position

Main solenoid closer to the cathode yields better transverse projected emittance

0 mm: Gun 4 solenoid configuration;

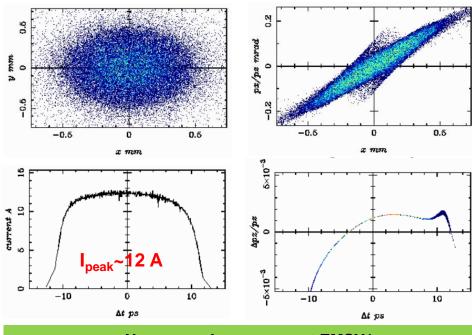
-20 mm: main solenoid to cathode distance is reduced by 20 mm

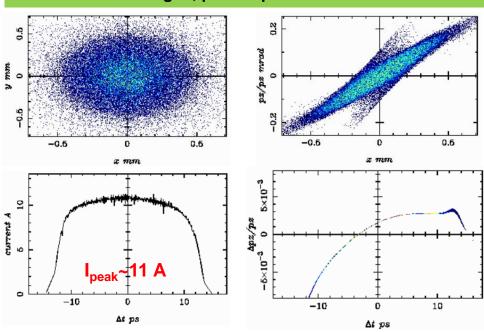


Sebastian's comments: At Gun 4 the solenoid can be moved by about **75 mm towards the cathode**. This is needed in order to mount the DN100CF-flange. For Gun 5 the Solenoid can be moved even further to allow the exchange of the pick-up.

DESY. PITZ Page 12 / 18

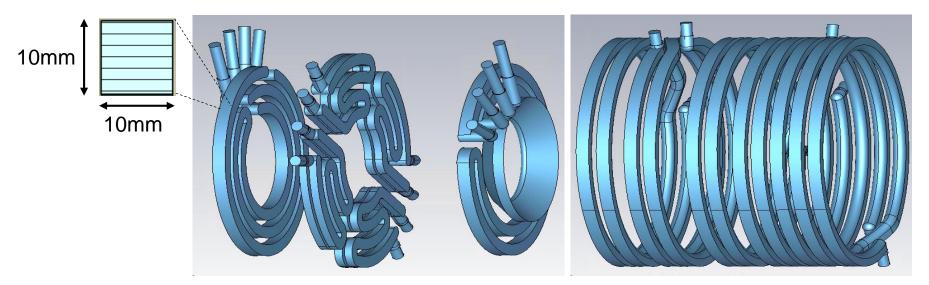
Optimal parameters for 250 pC charge


		Gun 4	New gun
Cath	Temporal profile	Flat top 2 / 21.5 \ 2 ps	Flat top 2 / 21.5 \ 2 ps
Cathode laser	Transverse distribution	homogenous	homogenous
lase	XYrms (mm)	0.264	0.245
벅	Thermal emit. (mm mrad)	0.224 (74%)	0.208 (68%)
	Ecath (MV/m)	60	48
70	MMMG phase (deg.)	45.15	57.28
RF gun	Phase (deg.)	1.13	4.67
5	Eemission (MV/m)	43.4	42.4
	Max Bz (T)	-0.2246 (~370A)	-0.17687 (~290 A)
Booster	Max E (MV/m)	12.0	12.0
ster	Phase (deg.)	0	0
	Charge (nC)	0.25	0.25
φ	Energy @ gun exit (MeV)	6.13	6.10
beam	Energy @ EMSY1 (MeV)	16.5	16.5
	Energy spread (keV)	35.6	57.5
@EMSY1	Rms bunch length (mm)	1.827	2.104 (↑15%)
3	XYrms (mm)	0.295	0.275
РІТ	Proj. emit. (mm mrad)	0.303	0.306

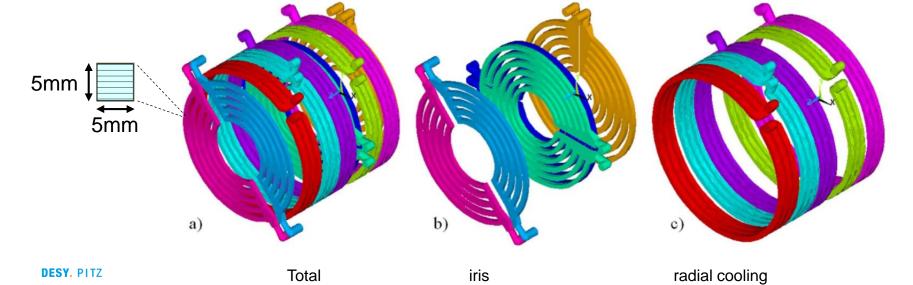

Optimal parameters for 250 pC charge

		Gun 4	New gun
Cath	Temporal profile	Flat top 2 / 21.5 \ 2 ps	Flat top 2 / 21.5 \ 2 ps
Cathode laser	Transverse distribution	homogenous	homogenous
lase	XYrms (mm)	0.264	0.245
Y	Thermal emit. (mm mrad)	0.224 (74%)	0.208 (68%)
	Ecath (MV/m)	60	48
Z)	MMMG phase (deg.)	45.15	57.28
RF gun	Phase (deg.)	1.13	4.67
5	Eemission (MV/m)	43.4	42.4
	Max Bz (T)	-0.2246 (~370A)	-0.17687 (~290 A)
Booster	Max E (MV/m)	12.0	12.0
ster	Phase (deg.)	0	0
	Charge (nC)	0.25	0.25
φ	Energy @ gun exit (MeV)	6.13	6.10
bear	Energy @ EMSY1 (MeV)	16.5	16.5
n @	Energy spread (keV)	35.6	57.5
beam @EMSY1	Rms bunch length (mm)	1.827	2.104 (†15%)
¥	XYrms (mm)	0.295	0.275
	Proj. emit. (mm mrad)	0.303	0.306

Gun 4, phase space at EMSY1



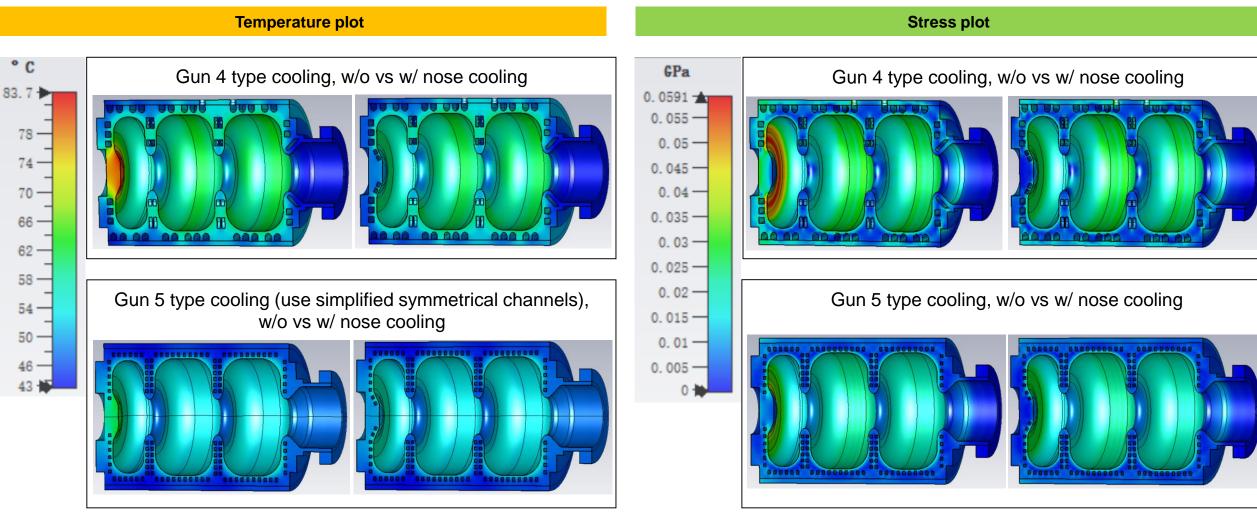
New gun, phase space at EMSY1


Mechanical design and simulation

Water cooling scheme, two choices: PITZ Gun 4 & Gun 5

Gun 4 cooling pipe (Courtesy of Sebastian)

- 12m³/h water flow, ~2 m/s
- Already demonstrated to handle 40 kW RF heating


Gun 5 cooling pipe, enhanced cooling performance (see NIM A 854 (2017) 113-126)

- Cut plane area ↓, heat transfer coefficient ↑ (same water speed)
- Total heat exchange area ↑
- Target is 60 kW RF heating load, in RF conditioning phase
- Water channels almost cover all the inner surface, very good optimization

Page 15 / 18

Temperature and stress distribution of new gun

Water conditions: 40 degC, 2 m/s; power loss 74.3 kW

- Empirical heat transfer coefficient was used for a quick comparison, ~20% temperature and stress underestimation.
- Water temperature rise inside the channel was not considered, estimated total T rise at exit ~ 5.5 degC

Temperature and stress distribution of new gun

Water conditions: 40 degC, 2 m/s

	RF heating (kW)	Cathode center T rise (degC)	Peak T rise (degC)	Peak stress (MPa) ^[3]	Peak deformation (um)	Detuning sensitivity (kHz/kW)
Gun 4 [1]	40	18.0	22.1	36.1	44.8	- 5.7
Gun 5 [2]	63.1	~10	17.7	35.4	~28	- 2.3
New gun + Gun 4 cooling	74.3	39.0	43.7	59.1	73.6	- 4.2
New gun + Gun 4 cooling, w/ nose cooling	74.3	9.7	22.6	36.8	69.3	- 3.6
New gun + Gun 5 cooling	74.3	21.5	24.6	42.4	62.9	- 2.5
New gun + Gun 5 cooling, w/ nose cooling	74.3	11.6	18.8	29.4	64.4	- 2.3

Page 17 / 18

^[1] NIM A, 1004 (2021) 165344

^[2] NIM A, 854 (2017) 113–126

^[3] Yield strength limit of Cu is ~62 MPa

Conclusion

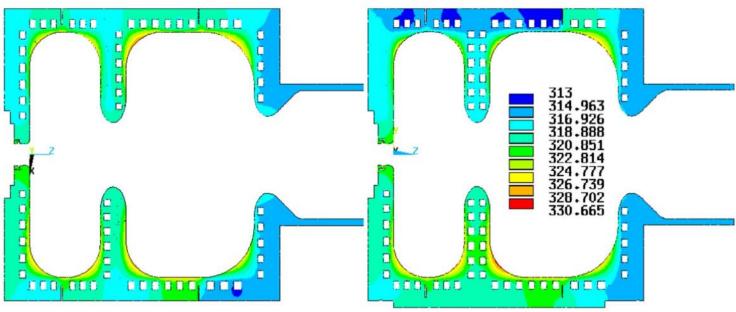
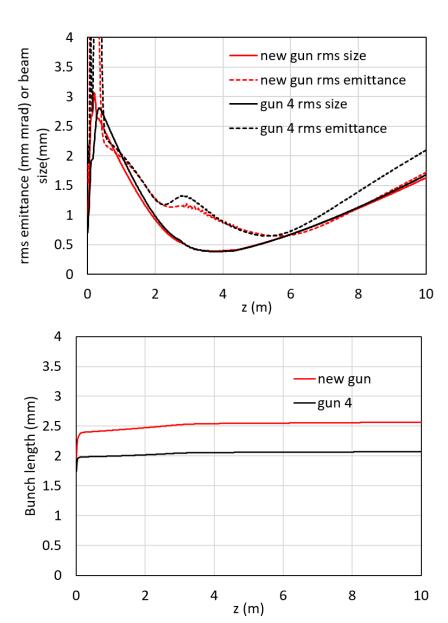
- New gun aiming for 2 ms / 10 Hz operation mode has been proposed for PITZ.
 - The required peak RF power 3.71 MW (~62% of Gun 4), operation stability can be improved, i.e. less discharge in waveguide, MP free region of RF window.
 - Lower surface E field → lower dark current in one RF macro pulse. But higher duty cycle, average dark current? Dark current measurements of Gun 5 can give more clues.
 - A similar beam emittance with Gun 4 but longer bunch has been achieved.
 - Gun 5 type cooling applied, all specs looks good vs. gun 4 with a duty factor increase of ~3
 - Nose cooling channel is helpful to reduce temperature of cathode vicinity.
- The structure (reentrant cathode cell + pillbox accelerating cells) can be extend to other frequency RF guns to increase duty cycle, e.g. kHz UED / UEM using S band RF guns.

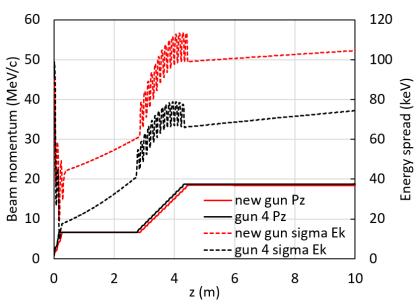
DESY. PITZ Page 18 / 18

Backup slice

Gun 4 and 5 thermal performance

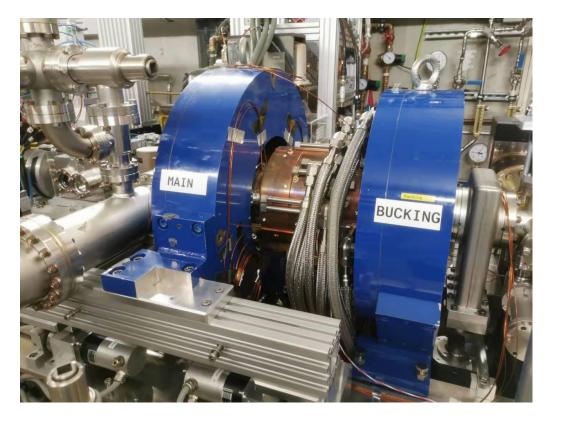
Gun 4, 70 degC water, 2 m/s 40 kW power loss Max. T rise 22.1 degC Cathode center T rise ~ 18 degC


Fig. 19. The temperature distribution in the metal cavity parts for two perpendicular cross sections.

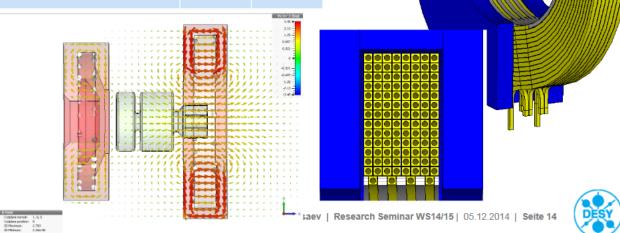
DESY. PITZ Page 19 / 18

1 nC case


Optimum parameters					
	Gun 6	Gun 4/5			
Ez (MV/m)	48	60			
Gun phase (deg)	2.35	-1.34			
Booster z (m)	2.785	2.675			
Booster E (MV/m)	13.68	14.04			
Booster phase (degree)	0	0			
Solenoid Bz(T)	0.1727	0.2261			
EMSY1_z(m)	5.28	5.28			
emit(um)@EMS Y1	0.661	0.648			
xrme(um)@EMS Y1	0.544	0.539			
Ekin(MeV)@EM SY1	17.9	18.3			
zrms(mm)@EMS Y1	2.55	2.06			
Delta_E(keV)@E MSY1	99.9	67.5			

DESY. PITZ
Page 21 / 18

Gun 5 + solenoids



Solenoids

The cavity is surrounded by a main solenoid and a bucking solenoid for focusing purposes and in order to compensate space charge forces.

Parameter	Main solenoid	Bucking solenoid	
Wire material	Copper		
Shield material	Iron		
Inductivity, T	0.28	0.15	
Max current, A	500 300		
Number of turns	108	57	

DESY. PITZ Page 22 / 18