Test S2E simulation for the Ideal THz source (100 µm SASE FEL; Beam 4nC, ~15 MeV/c)

Prach Boonpornprasert PITZ Physics Seminar 2.12.2021

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Outline

Test S2E Simulation

- Layout of the beamline for S2E
- Simulation Setup
- S2E Results
 - Beam Parameter Evolutions
 - Beam at the undulator entrance
 - FEL Results
- Summary and Outlook

Comparison ASTRA and Ocelot

- Limitations of Ocelot
- Simulation Setup
- Results Comparison of Tracking from 10 m to 26 m
 - Beam Parameter Evolutions
 - Beam at the undulator entrance
- Summary and Outlook

Page

Test S2E Simulation

Layout of the beamline for S2E

Section	Length	Purpose	Detail	
RF gun	0.204 m	Generate and accelerate e-beam	DESY NC L-band RF gun, 1.3 GHz, E _{max} ~ 60 MV/m	
DLW	a few cm	Induce beam modulation for FEL seeding	To be newly designed	
1 st and 2 nd Linacs	1.710 m	Accelerate e-beam	PITZ-type CDS cavity, 1.3 GHz, E _{max} ~ 14 MV/m	
1 st chicane	5.500 m	Compress e-beam	Copy of BC0@EXFEL, to be newly designed	
Modulator	?	Induce beam modulation for FEL seeding	To be newly designed	
2 nd chicane	5.500 m	Compress e-beam	Copy of BC0@EXFEL, to be newly designed	
TDS	0.687 m	LPS diagnostics	PITZ TDS, 3 GHz	
Dogleg	0.500 m	Bending e-beam to another beamline	To be newly designed	
THz undulator	5.000 m	Generate FEL 20-100 µm (3-15 THz)	$\lambda_p = 40 \text{ mm}, \text{APPLE-II type undulator}$	
IR undulator	?	Generate FEL 5-20 µm (15-60 THz)	To be newly designed	

Simulation Setup

Highlights of input parameters

ASTRA

BSA 4 mm

4 nC

- Distribution = '../InitialBeam/200k_ft215.ini'
- Xrms=1.0000
- Yrms=1.0000
- Qbunch=4.0000
- LSPCH=TRUE
 - 2D from gun: Nrad=40, Nlong_in=80, N_min=200.0000
 - 3D: Nxf=16, Nx0=1, Nyf=16, Ny0=1, Nzf=64, Nz0=1
- File_Efield(1) = '../AstraPortal/gun46cavity.txt' MaxE(1)=60.5000
- File_Efield(2)= '../AstraPortal/CDS14_15mm.txt' MaxE(2)=9.8000
- File_Efield(3)= '../AstraPortal/CDS14_15mm.txt' MaxE(3)=0.0000 _____ Didn't use the 2nd linac

Genesis 1.3 version 2

• AW0 = 1.8464

Helical undulator

SASE FEL

 $\lambda rad = 100 \,\mu m$

Page 6

- IWITYP = 1 XKX = 5.0000E-01 XKY = 5.0000E-01
- XLAMD = 0.0400 NWIG = 125 NSEC = 1
- NPART = 8192 λ_{U} = 40 mm
- PRAD0 = 0.0000E+00-
- XLAMDS = 1.000000E-04
- ITDP = 1 ~

• ZSEP = 1.00 Time-dependent simulation

- NSLICE = 300 NTAIL = -5
- SHOTNOISE = 1.00
- DELZ = 0.5000

S2E Results: Beam Parameter Evolutions

Page 7

S2E Results: Beam at the Undulator Entrance

DESY.

Page 8

DESY.

Page 9

Summary & Outlook

- The first S2E simulation of a SASE FEL for the ideal THz source was done.
 - Beam 4nC, ~15 MeV/c → ~mJ pulse energy for 100 µm SASE FEL
- Repeat the test S2E simulation with Ocelot
 - We have to simulate bunch compressors and doglegs which ASTRA couldn't handle them well.
 - Instead of using many tools for an S2E work such as ASTRA, Elegant, CSRTrack and ImpactT, We should use Ocelot if it works well with dipole transports and S2E simulations.
 - Igor Zogorodnov already repeated S2E simulations for EXFEL with Ocelot (<u>https://www.desy.de/fel-beam/s2e/xfel.html</u>). Since we will transfer our simulations to them, we should use the same tool.
- Design consideration of the Chicanes
- Test S2E simulations with ultra-short bunch schemes (CTR & superradiant)
- Test S2E simulations with the IR Undulator

Comparison Results between ASTRA and Ocelot

Outline

Test S2E Simulation

- Layout of the beamline for S2E
- Simulation Setup
- S2E Results
 - Beam Parameter Evolutions
 - Beam at the undulator entrance
 - FEL Results
- Summary and Outlook

Comparison ASTRA and Ocelot

- Limitations of Ocelot
- Simulation Setup
- Results Comparison
 - Beam Parameter Evolutions
 - Beam at the undulator entrance
- Summary and Outlook

Limitations of Ocelot

- No cathode emission module? → couldn't start from the gun
- Couldn't import external fields
- No good user's manual → Not sure how to use the module for time-dependent FEL simulations
- Therefore, the simulation with Ocelot was done only for tracking the beam from 10 to 26 m (through drifts and quads, no dipoles and 2nd linac)

Simulation Setup

Examples of input parameters

ASTRA

- LSPCH3D=TRUE
- Nxf=16, Nx0=1, Nyf=16, Ny0=1, Nzf=64, Nz0=1
- ZSTART = 10, ZSTOP = 26
- Q_type(5)='../AstraPortal/Q3.data' Q_grad(5)=1.31861
 Q_noscale(5)=FALSE
 Q_pos(5)=11.0000

Real quad field profile

- Q_type(6)='../AstraPortal/Q3.data' Q_grad(6)=-1.35188 Q_noscale(6)=FALSE
 Q_pos(6)=11.2000
- Q_type(7)='../AstraPortal/Q3.data'
 Q_grad(7)=0.23268
 Q_noscale(7)=FALSE
 Q_pos(7)=15.0000

 $k_{\text{Ocelot}}[\text{m}^{-2}] = 0.2998 \frac{g_{\text{ASTRA}}[\overline{\text{m}}]}{1.59\beta E[\text{GeV}]}$

Scaling factor got from manual simulation scan (ASTRA \Leftrightarrow SCO)

- Ocelot
- sc1 = SpaceCharge()
- sc1.nmesh_xyz = [15, 15, 63]
- D4 = Drift(I=0.966)
- Q5 = Quadrupole(I=0.068, k1=KQArray[5], eid='Q5')
- D5 = Drift(I=0.132)
- Q6 = Quadrupole(I=0.068, k1=KQArray[6], eid='Q6')
- D6 = Drift(l=3.733)
- Q7 = Quadrupole(I=0.068, k1=KQArray[7], eid='Q7')
- D7 = Drift(I=0.132)

Use HZB method to calculate the effective length

Lattice = (start_sim, D4, Q5, D5, Q6, D6, Q7, D7, Q8, D8, Q9, D9, Q10, D10, Q11, D11, Q12, D12, Q13, D13, Q14, D14, Q15, D15, start_und, und, end)

Results Comparison: Beam Parameter Evolutions (10-26m)

Results Comparison: Beam at the Undulator Entrance

Parameters	ASTRA	Ocelot	Δ [%]
$\sigma_{\rm x}$ [mm]	0.205	0.221	7.80
σ _y [mm]	0.204	0.205	0.49
σ _z [mm]	2.688	2.688	0.00
σ _{Pz} [keV/c]	257.940	259.635	0.66
P _z [MeV/c]	15.166	15.174	0.05
Lorentz factor	29.696	29.711	0.05
ε _x [mm mrad]	2.052	2.544	23.98
ε _y [mm mrad]	3.113	2.627	-15.61
β _x [m]	0.610	0.568	-6.89
β _y [m]	0.396	0.473	19.44
ax	1.235	1.151	-6.80
α_{y}	1.374	1.802	31.15
Υx	4.144	4.092	-1.25
Υ _v	7.288	8.985	23.28

Results Comparison: Beam at the Undulator Entrance

ASTRA $x - p_x$ x-y 1.5 0.40 0.35 1.0 -0.30 [; 50 Intensity [a.u.] 0.5 p_x [keV/c] 25 a. y [mm] 0.20 .020 .0.15 Intensity 0.0 -25 -0.5-50 0.10 -1.0-75 · 0.05 -1.5 | _ -1.5 -100 |-3 -1.0-0.5 0.0 0.5 1.0 1.5 x [mm] x [mm] $y-p_v$ Z-X 0.25 Intensity [a.u.] Intensity [a.u.] p_y [keV/c] 25 x [mm] -25 -50 0.05 -2 -75· -100 + -3 --3 -2 -1 0 -6 -4 -2 0 y [mm] z [mm] z-y z-p_z 800 0.040 600 · 0.035 Intensity [a.u.] 400 -0.030 -Ľ. 200 v 0 v 200 v 0 v 200 0.025 e y [mm] Intensity [-4000.010 -600 0.005 -800 + -2 0 -6 -2 -40 D z [mm]

z [mm]

Results Comparison: Beam at the Undulator Entrance

Page 18

Summary

Comparison Results between ASTRA and Ocelot

- The results of ASTRA and Ocelot are comparable.
- Note that, for space-charge calculations, Ocelot uses matrices up to 2nd order while ASTRA uses Runge-Kutta integration method.
- Comments on Ocelot

Pro

- Much faster tracking with space-charge (For example, 16 m tracking with quads, ASTRA → 2.5 hours, Ocelot → 5 minutes) and get comparable results
- On Python environment

Con

- No good user's manual
 - Not sure how to use the module for time-dependent FEL simulations (and many more)
 - Many results are treated internally, have to look into the source files to understand the results
- No cathode emission module, Can't import external fields

Ocelot can't completely replace ASTRA

Outlook

- Repeat the test S2E simulation with Ocelot
 - We have to simulate bunch compressors and doglegs which ASTRA couldn't handle them well.
 - Instead of using many code for an S2E work such as ASTRA, Elegant, CSRTrack and ImpactT, We should use Ocelot if it works well with dipole transports and S2E simulations.
 - Igor Zogorodnov already repeated S2E simulations for XFEL with Ocelot (<u>https://www.desy.de/fel-beam/s2e/xfel.html</u>). Since we will transfer our simulations to them, we should use the same tool.
- Design consideration of the Chicanes (idea \rightarrow +/- R56)
- Test S2E simulations with ultra-short bunch schemes (CTR & superradiant)
- Test S2E simulations with the IR Undulator

DESY.

Capabilities of the ideal THz source

P.Zalden et. al, "TECHNICAL NOTE Terahertz Science at European XFEL" XFEL.EU TN-2018-001-01.0, 2018

- Bandwidth: Tunable bandwidth ΔE/E between 1 (singlecycle, shortest pulse possible) and 0.05 (multi-cycle, to coherently drive matter).
- Frequency: Tunable centre frequency in the range 0.1 to 30 THz (3 mm to 10 µm wavelength). Within this range, 3 to 20 THz is the most difficult to cover by existing sources; at the same time, many vibrational resonances and relaxations in condensed matter occur at these frequencies.
- Pulse fluence/field strength: More than 2 MV/cm, which corresponds to > 10 GW/cm2. Pulses of 1 ps duration would then generate fluences of > 10 mJ/cm2. Assuming a focus size with diameter of the wavelength, this requires pulse energies of 3 mJ at 0.1 THz and 30 µJ at 1 THz. At 10 THz, 0.3 µJ would be sufficient in principle, but the ideal focussing can most likely not be achieved and therefore a minimum of 10 µJ should ideally be achievable at all frequencies.

- **Carrier envelope phase (CEP):** Should be either stable (i.e. each pulse has the same temporal electric field E(t)) or, alternatively, it must be measured for each pulse. The CEP-stable option simplifies data processing significantly.
- **Repetition rate:** To make best use of the potential of the European XFEL, the source should operate at least at 0.1 MHz but ideally could follow the 4.5 MHz bursts.
- Synchronization: Temporal jitter must be better than 0.1/frequency to resolve the electric field cycles, e.g. < 20 fs at 5 THz. This could be either the intrinsic jitter or the resolution of a timing measurement.
- **Optional:** Polarization control: Could be achieved with optics after THz generation and does not need to be considered here.

