Analysis Techniques and Measurements of Non-Relativistic Hadron Beams

Chris Richard

Hadron accelerator front ends

- Front ends consist of ion source, LEBT, RFQ, and MEBT
 - Designed to provide initial acceleration, bunching, and matching into the main accelerating structure
- The beam typically has low energy and is non-relativistic
 - ~10s of keV in LEBT, ~1 MeV in MEBT
 - Low rigidity causes the beam to evolve relatively rapidly
 - Can result in significant space charge effects
 - The beam can be easily manipulated and scraped
- Require a diagnostic suite in MEBT to ensure proper matching
 - SRF accelerators detailed knowledge of the beam tails is desired so they can be removed to avoid losses
- Presented measurements were taken at PIP2IT MEBT at Fermilab

PIP2IT MEBT beam parameters			
Species	H-		
Energy	2.1 Mev		
Current	5 mA		
Bunch rep rate	162.5 MHz		
Transverse emittance	<0.23 mm mrad		

Transverse phase space measurements

- Typically quantified measured phase space with the emittance and Twiss parameters
 - But the measured contains more information that solely rms parameters
 - Can only directly compare the emittance between separate measurements
 - The beam rotates in x-x' phase space during transport, making direct comparisons challenging
- Solution: convert the measured phase portraits into action-phase $(J-\phi)$ coordinates

$$- J = \frac{1}{2} \left(\beta u'^2 + 2\alpha u u' + \gamma u^2 \right) \phi = -\arctan\left(\frac{\alpha u + \beta u'}{u}\right)$$

- Action is a constant of motion under linear optics, phase varies with the betatron phase advance
- Measure x-x' distribution then convert to J-φ coordinates
 - Intensity J distribution should be stable
 - J-φ distribution shows tails as two branches in phase

0.6

0.4

0.2

Action-phase parameterization

- Action is calculated with the "central" Twiss parameters
 - Fit Gaussian to upper portion of beam
 - $I_{\text{gauss}} = I_0 e^{-J/\epsilon_c} = I_0 e^{-\frac{1}{2\epsilon_c} \left(\gamma x^2 + 2\alpha x x' + \beta x'^2\right)}$
 - Used to avoid influence of tails in core definition
- Characterize beam with 7 parameters
 - Central Twiss, α, ß shape of core
 - Central slope emittance if it was Gaussian
 - Transition action boundary between tails and core

×

- Fraction in core relative size of tails
- Tail phase avg phase of positive branch
- Maximum action max beam size

DESY. | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

Determining central parameters

- Remove lowest intensity pixels then fit remaining pixels to a Gaussian
- Fit to a range of removed intensities, central parameters are set to the cut that gives the minimum central slope
 - Use to avoid affects of tails and poor statistics
- Transition action is where the average distribution deviates from the central fit

Slit size effects

- Measurements shown were taken at PIP2IT with an Allison scanner
 - Two fixed slits with voltage applied in gap
 - Scan position by moving device
 - Scan angle by scanning voltage
- The non-zero size of the slits distort the measured distribution
 - Passed phase space is a rhombus and can overlap with neighboring pixels

Parameter

Slit separation

Plate voltage

Plate length

Plate separation

at 2.1 MeV

Maximum measurable angle

Slit size

Value

0.2

320

 ± 1000

300

5.6

 ± 12

Unit

mm

mm

V

mm

mm

mrad

- Measured distribution can be found by integrating beam distribution over the front and back slits
- E.g. for a Gaussian beam and Allison scanner of length , and slit size the measured distribution is:

$$I_{\text{gauss}} = I_0 e^{-J/\epsilon_c} = I_0 e^{-\frac{1}{2\epsilon_c} \left(\gamma x^2 + 2\alpha x x' + \beta x'^2\right)} \qquad I_{\text{meas}}(x, x') = \exp\left(-\frac{1}{2\epsilon_c} \left[\gamma x^2 + 2\alpha x x' + \beta x'^2\right]\right)$$

$$d = \text{slit size}_{\text{I = slit separation}} \qquad \left(1 + \frac{d^2}{6\epsilon_c^2} \left[\epsilon_c \left(\frac{2\alpha}{\ell} - \frac{2\beta}{\ell^2} - \gamma\right) + 2\left(\frac{\alpha x + \beta x'}{\ell}\right)^2 + (\alpha x' + \gamma x)^2 - 2\left(\frac{\alpha x + \beta x'}{\ell}\right)(\alpha x' + \gamma x)\right]\right)$$
DESY. | Presentation Title | Name Surname, Date (Edit by ')

Quadrupole scan

- Action distribution is constant under linear optics
 - Vary strength of closest quadrupole to AS, distribution should not change
- Distribution of intensities in action is constant
 - Central slope and the fraction in core are constant
- Change of branch phase agrees with simulated change in betatron phase advance

⊢0

- -5

Distributions at different locations

- Phase portraits were taken at three locations along the PIP2IT MEBT
 - Location 1 measured the horizontal plane, Locations 2 and 3 measured the vertical plane
 - Values averaged over 10 scans at each location
- Both planes have similar rms emittances
 - But the central slope and percent of the beam in core is larger in the horizontal plane
- Signs of tail growth between locs 2 and 3

Location	rms ϵ	ϵ_c	% in core
1 - horz	0.20 ± 0.013	0.146 ± 0.003	88 ± 2.5
2 - vert	0.19 ± 0.015	0.117 ± 0.013	71 ± 11
3 - vert	0.22 ± 0.024	0.123 ± 0.011	72 ± 10

Beam tail removal

Scraper

DESY. | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

Relative size of beam tails

- The tails for two distinct branches in phase. Therefore, the tails contribute to the 2nd harmonic in phase
- Relative amplitude of tails can be measured by taking Fourier transform in each action bin
 - Compare the amplitudes of the 0th and 2nd harmonics as function of action
- At low action, e.g. the core, 0th harmonic dominates. In the tails it is comparable to the 2nd harmonic
 - For a synthetic Gaussian beam with noise, the 2nd harmonic is ~2 orders of magnitude lower than the 0th
- Phase of the 2nd harmonic shows the location of the tails

DESY. | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

- Shown it is possible to measure distributions in action and they are stable under changes to optics
- Action distributions are useful for directly comparing different phase space measurements
 - E.g. comparing horizontal and vertical planes
- Future work
 - Presented studies were limited by noise
 - Dynamic range of only ~2 orders of magnitude making tail measurements challenging
 - Estimate we only measure ~95% of the total intensity
 - Beam measurements were distorted by beam jitter
 - Made directly correctly amplitudes for slit effects impossible (too noisy to deconvolve)
 - Continue to develop harmonic analysis

Example of noise due to beam jitter