

Agenda

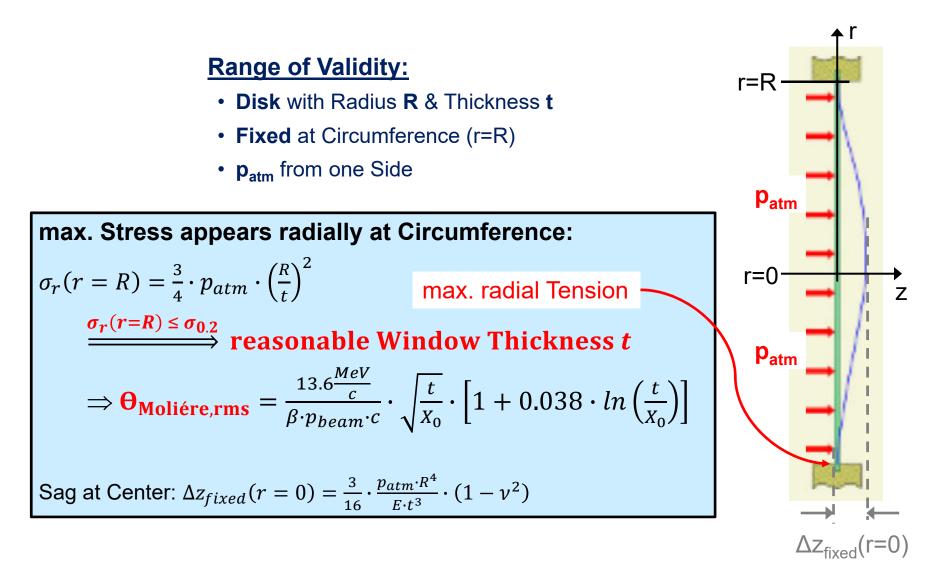
1) Constraints ⇒ Material Selection

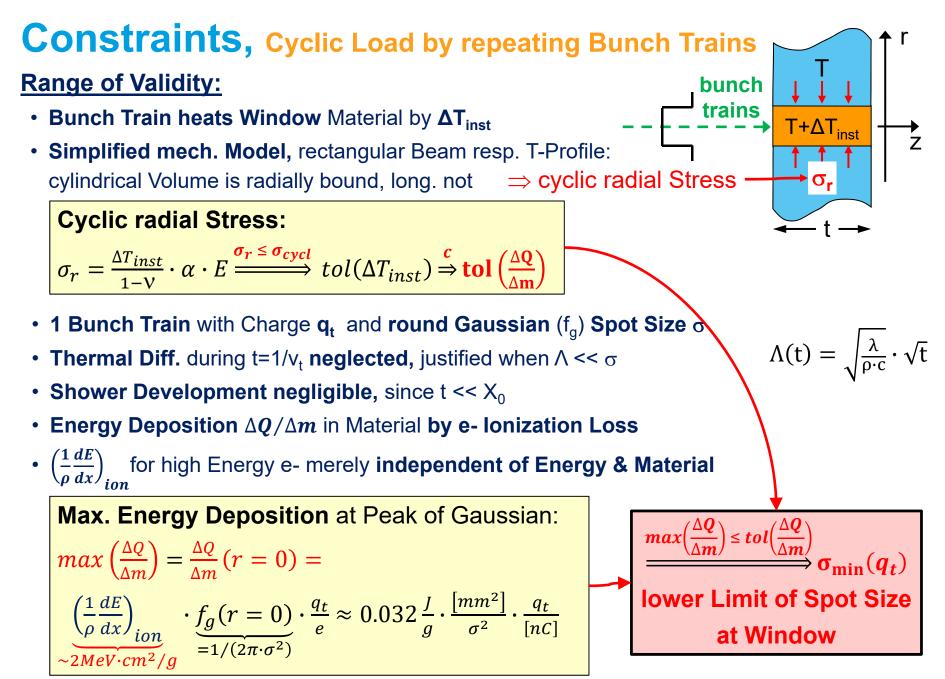
2) Technical Realization of Window and Issues

3) Summary and Outlook

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Constraints, Disc Window: Radius R, Thickness t, Edge cooled

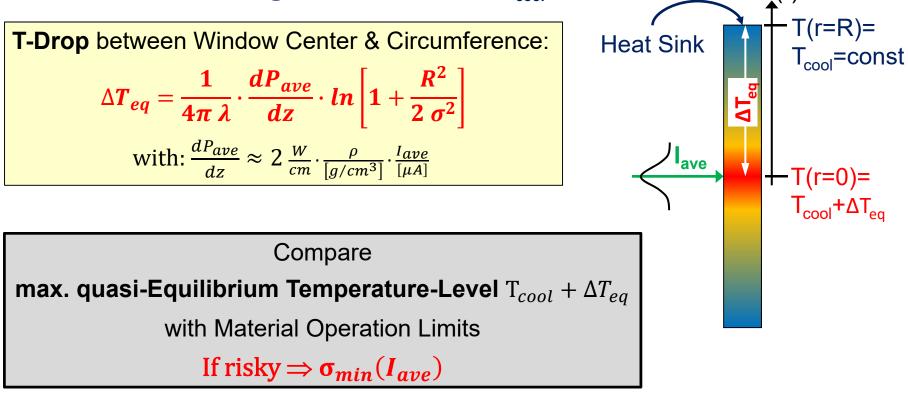

Load on Window	Involved Parameters		Resulting Limits	Goal
	beam	material		
static by p_{atm}	σ _{0.2} , R		\Rightarrow t	
	Eb	t, X_0	$\Rightarrow oldsymbol{ heta}_m$	small
instantaneous-cyclic by bunch-train	σ, q_t	c, α σ_{cycl}, ν, E	$\frac{\Delta Q}{\Delta m} < tol\left(\frac{\Delta Q}{\Delta m}\right) \Rightarrow \boldsymbol{\sigma}_{min}(\boldsymbol{q}_t)$	small
quasi-static by <i>I</i> ave	$I_{ave}, \sigma \qquad \rho, \lambda$		\Rightarrow $T_{eq}(x, y, z) \Rightarrow \sigma_{min}(I_{ave})$	small


Parameter	Description
t , R	thickness & radius of window
$\boldsymbol{\theta}_{m}$	Moliére angle
p _{atm}	pressure on air-side of window
$rac{\Delta oldsymbol{Q}}{\Delta oldsymbol{m}}$, $oldsymbol{tol}\left(rac{\Delta oldsymbol{Q}}{\Delta oldsymbol{m}} ight)$	instantaneous-cyclic energy deposition in window by charge q _t & its tolerable limit
σ , σ_{min}	spot size at window & its lower limit
q_t , v_t	charge & repetition rate of bunch train
$I_{ave} = q_t \cdot v_t$	average beam current
E _b	beam energy

Material Property	Description			
<i>X</i> ₀	rad. lenght			
ρ	mass density			
С	spec. Heat			
λ	therm. cond.			
α	therm. expansion			
$\sigma_{0.2}$	tensile strenght			
σ_{cycl}	endurance limit			
E	E-modulus			
ν	Poisson number			

DESY. | PITZ | Michael Schmitz, Oct. 14, 2021 | CFC-based Window for Flash Therapy @ PITZ - Status -

Constraints, Static Load by Air Pressure



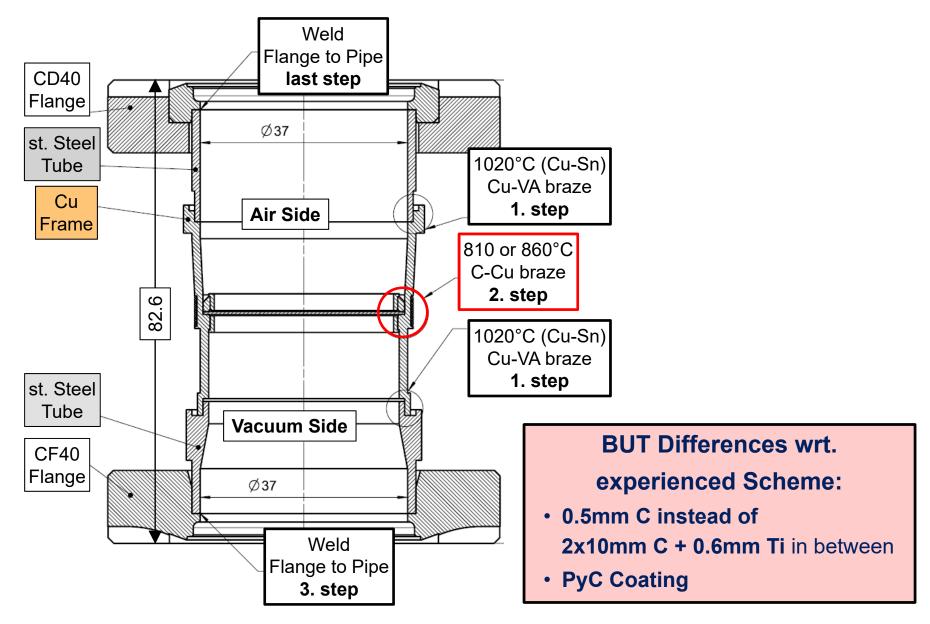
DESY. | PITZ | Michael Schmitz, Oct. 14, 2021 | CFC-based Window for Flash Therapy @ PITZ - Status -

Constraints, Quasi-average Load by average Beam Current

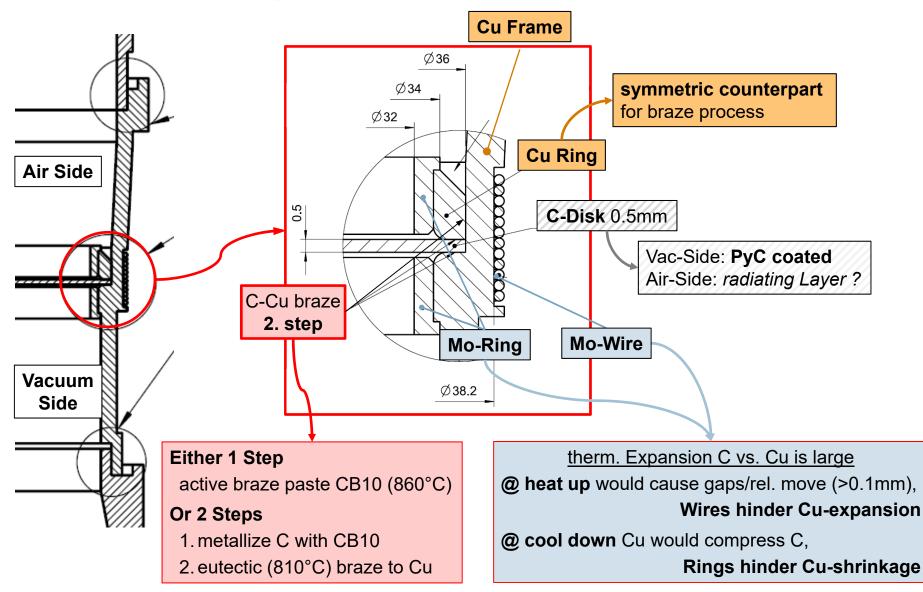
Range of Validity:

- + Repeating Bunch Trains with Charge \textbf{q}_t , round Gaussian Spot Size σ and rep. Rate ν_t
- Pulsed Beam with $I_{ave} = q_t \cdot v_t$ treated as pure DC-Beam
- Energy Deposition treated as on previous slide
- Heat Extraction ONLY by Heat Conduction to Window Circumference (very conservative)
- Window Circumference @ r=R is Heat Sink with T_{cool} =const

Constraints, Material Pros & Cons, Motivation for CFC-Graphite


R [mm] p [MPa]	17 0.1	C isotropic	Mersen CFC-A-KFM	SGL SigraBond mechanical	Schunk CF-222	Schunk CF-12136 (Vlies)	Kapton Polylmid	Ве	AI	Ti	Fe	Cu
	Consequences from Static Load											
tensile strenght (σ _{0.2} , CFC: flexural)	MPa	60	120	65	100	110		300	110	350	300	130
t _{fix}	mm	0.60	0.43	0.58	0.47	0.44	0.43	0.27	0.44	0.25	0.27	0.41
			*) preforming reduces required thickness !							kness !		
Δz _{fixed}	mm	0.80	0.42	0.22	0.18	0.70	5.15	0.28	0.22	0.82	0.43	0.16
O _{Moliere} @22MeV	mrac	23.2	19.2	21.2	19.2	19.0	17.9	12.4	34.9	41.9	64.3	90.0
			Co	onsequences	s from Puls	sed Beam	Heating					
tol(ΔQ/Δm) C brittle->70%ΔT _{inst}	J/g	225	98	137	53	337	196	66	14	79	25	6
σ_{min}	mm	0.8	1.3	1.1	1.7	0.7	0.9	1.6	3.4	1.4	2.5	5.2
q _t [nC]	5000						low T _{mela}					
Consequences from Quasi-Average Beam Heating												
Λ(t)	μm	273	170	194	191	163		296	284	83	148	331
t [ms]	1											
ΔT _{eq}	К	80	174	144	120	243	378	37	28	911	244	34
v _t [Hz]	10											

CF-C best Allrounder, besides Be


- Schunk CF-12136
- SGL Sigrabond mechanical
- Mersen CFC-A-KFM

Evaluation of <i>wrt.</i>	CF-C	Kapton	Be	Ti	ΑΙ
Scattering			*)	*)	*)
Pulsed Beam					
DC-Beam					

Window Design, Adopt & Modify FLASH & XFEL Scheme

Window Design, Key Point: C-Cu braze

Window Production, Status and Perspective

Status:

- reasonable Design exists
- PyC coating on CFC: UHV leak tight, weak bonding to CFC \rightarrow avoid shear stress
- CB10 paste brazes PyC, C and Cu
- Contact to 3 Suppliers (Schunk, SGL, Mersen)
 - general Reaction is reluctant, seems to be out of their production and financial scope
 - nevertheless delivered samples for leak and brazing tests, but not thinner than 1mm
 - SGL & Mersen now try to produce 0.5mm PyC coated CFC-Disks with Ø36mm
 - No response from Schunk yet

Perspective:

- a) Check C-Cu Fabrication Step in real Geo. (with Cu-Frame only ?)
 - fabricate Cu-Frames, Cu-Rings, Mo-Parts and st. Steel Pipes \rightarrow Sebastian
 - design and fabricate Support on Air-Side Mo-Ring during Brazing → Sebastian
 - brazing at $HH \rightarrow Michael$

b) When a) successful, produce final window(s)

Summary and Outlook

Summary:

- CFC Material is a promising Candidate for an e- Window @ PITZ Flash Therapy
- A reasonable Design for the Window is ready
 - Decision on 1 or 2 step CFC Cu Brazing Procedure depends on Pretests
- Crucial Issues are:
 - Getting 0.5mm CFC disks, PyC coated
 - CFC Cu braze, without applying critical stress to the disk and the PyC Coating

Outlook:

- Suitable Samples for realistic brazing Pretests are coming soon, hopefully
- Window Parts (esp. for Pretests) have to be manufactured
- > When 1. Window exists, Beam Tests at PITZ to find out Destruction Limits
 - Find suitable space in PITZ Beam Line
- Radiating Coating on Air-side for transv. Profile & Position Measurement