Updated studies on PITZ radiation biology beamline

H. Qian 26.08.2021

Outline

- Space charge effect in dogleg optics by SCO with a model beam
 - Vs bunch charge, vs emittance, vs peak current
- Beam optics simulation after dogleg for 1 nC case
- Some discussions for final focusing

Some boundary conditions

60 degree dogleg optics w/o space charge By MadX

MadX vs SCO

DESY.

By SCO, 0 pC, 2 um.rad case

By SCO, 0.25 nC, 1 um.rad, 20 A

By SCO, 1 nC, 2 um.rad, 50 A

By SCO, 4 nC, 2 um.rad, 200 A

By SCO, 4 nC, 4 um.rad, 200 A

By SCO, 4 nC, 9 um.rad, 200 A

By SCO, 4 nC, 9 um.rad, 100 A

By SCO, 5 nC, 9 um.rad, 200 A

Once matched at 3 m upstream dogleg, MadX optics still works, no crazy beam size inside the dogleg.

DESY. Lower peak current, large emittance make beam more emittance dominated, optics closer to MadX optics.

Some considerations

1 nC case by SCO

2 um.rad, 50 A (with beam optics from MadX)

Deviated from dogleg symmetry optics due to space charge effect

1 nC case by SCO

2 um.rad, 50 A (with modified beam optics)

Increased initial beam focusing by 5% to overcome space charge defocusing in the 1st 3 meter.

Closer to symmetry optics in dogleg.

beta x y

1 nC case by SCO

2 um.rad, 50 A (with modified beam optics)

~4 m transport line from Dogleg exit (~5.8 m) to sample (~10 m)

4 m from Dogleg exit (~5.8 m) to sample

DESY.

0.25 nC and 4 nC case plugged into 1 nC optics

No re-optimization of triplets, no modification of matching optics

0.25 nC, 1 um, 20 A, initial matching from MadX is used. 4 nC, 9 um, 200 A, initial matching from MadX is used.

Compared to 1 nC, 2 um, 50 A, beam optics looks reasonably close, additional triplet tuning is needed.

Beam focusing size at sample for tumor painting

20 MeV case

- 1 nC/2um.rad/50A beam SCO simulation shows a 0.27 mm rms beam size on sample (no scattering)
 - Exit window scattering is not considered, roughly 20 mrad rms scattering angle
 - 10 cm drift from window to sample → <u>2 mm rms size</u>, FWHM ~4.7 mm
- What's the beam size needed for tumor painting (25 x 25 mm^2)?
 - PITZ booster: 200 bunches (1 MHz) to 900 bunches (4.5 MHz, needs faster sweeper)
 - Then <u>14 x 14 or 30 x 30</u> micro beam painting, → beam separation <u>1.78 or 0.83 mm</u>
 - If beam separation is half the FWHM beam size, then beam means the second separation is half the FWHM beam size, then beam means the second second
 - Without window scattering, beam rms size is too small for superficial tumor painting?
 - Longer bunch trains will allow smaller beam to paint the tumor, or paint a bigger area (needs stronger sweeper)
 - e.g 1 ms, 4500 bunches train to paint 25 x 25 mm², then beam <u>rms size >= 0.32 mm</u>
 - For 25 x 25 mm² superficial tumor painting, does smaller beam size (0.32 2 mm rms) help? NO? Same does.

Final focusing just before the sample for tumor painting 20 MeV case

- What if a certain case needs a smaller beam size <2 mm on the sample?
 - A focusing lens has to be placed after the exit window, but this will focus the sweeping range as well.

- 1) 1:1 imaging will not reduce sweeping range
- 2) Beam size on sample equal to beam focusing on exit window, window scattering does not matter anymore
- 3) Needs extra space for such a symmetric imaging lens
- 4) Beam focusing allowed by window damage threshold will limit beam size at sample
- 5) For sharp focusing to create peak does effect in depth, 25-50 mm rms size is needed at lens (10 cm away from sample), window scattering is too small (only 2 mm rms)

- SCO model beam simulations show the dogleg optics designed with MadX still work under space charge.
 - Lower peak current, larger emittance will help the optics.
 - Matching into the dogleg is not easy, upstream quads too far away, few diagnostics
- A preliminary 4 m beam transport line from dogleg exit to sample is optimized with a 1 nC model beam.
 - 0.25 nC and 4 nC beam transportations with the 1 nC optics also work, triplet focusing adjustments are needed.
- Some discussions:
 - Beam focusing at sample required for sweeping mode (for superficial tumors)
 - 30 x 30 bunch painting 25 x 25 mm², beam size at least >0.7 mm rms
 - Window scattering leads to 2 mm rms (if 10 cm from window to sample)
 - Final Imaging lens after exit window needed to achieve < 2 mm rms focusing in sweeping mode
 - To spare healthy superficial tissue in deep seated tumor radiation?
 - Is it necessary for painting superficial tumor case?
- Further beamline optics optimization or verification with S2E beam tracking is still needed.