Preliminary modeling of the Gun5.1 field profile

M. Krasilnikov

PPS, 26.08.2021

Modeling Gun5.1 field profile

Motivation

- Goal: generate Ez(z) field distribution:
 - Electromagnetically consistent (Superfish SF model H. Qian)
 - Fits the bead-pull measurements (31.03.2021, A. Oppelt)
- Application:
 - Simulate curve max <Pz> vs. Ecath → Ecath, MMMG phase vs. max <Pz>
 - The profile Ez(z) to be used for beam dynamics simulations of experiments with Gun5.1

Gun5 nominal geometry

Superfish (SF) model (H. Qian)

Superfish simulations with nominal geometry

Field balance for the pi-mode \rightarrow 0.980

Superfish simulations with nominal geometry

Various options w/o antenna

Case 1 (+cath+MR-CA)	Case 2 (-cath+MR-CA)	Case 3 (-cath-MR-CA)
Cathode	No cathode	No cathode
Mesh refinement (MR)	Mesh refinement (MR)	No mesh refinement
No coaxial antenna (CA)	No coaxial antenna (CA)	No coaxial antenna (CA)

N+\4groups\zn_ni

Superfish simulations with nominal geometry

Various options w/o antenna

Superfish model with coaxial antenna

Case 4 = (-cath-MR+CA)

- Adding coaxial power coupler antenna:
 - Adjusting the nose position (S. Philipp \rightarrow 222.716mm)
 - Longer right boundary (z=28cm not yet fine tuned*)

Superfish simulations with Case 4 geometry

Case 4 = (-cath-MR+CA) \rightarrow Field balance for the pi-mode \rightarrow 0.960

Bead pull measurements

A. Oppelt, 31.03.2021

Bead pull measurements

Preliminary considerations

- PI-mode measurements : shorter z-range at the cathode hole:
 - \rightarrow Uncertainty in the field balance evaluation
 - Z scales for 0 and pi are \neq
 - ? Inhomogeneous z-axis
- Overall shorter z-range:
 - E.g. for pi-mode "iris" frequency is regularly higher than the "0-base line" → uncertainty in the background subtraction
- General formula for the bead pull measurements:

- How to proceed:
 - Fit the bead pull measurements (SF \rightarrow Ez²)
 - Simultaneous fit of 0- and pi-modes
 - Tuning parameters: z_0 ; f_0 , z_{scale} , f_{scale}

•

$$z = z_{scale} \cdot (z_0 - z_{motorRDBK})$$
$$E(z)|_{meas}^2 = f_{scale} \cdot (f(z) - f_0)$$

f(pi-mode)=1300.464MHz f(0-mode)=1294.387MHz 1300.447 1300.4465 1294.367 1300.446 1294.366 1300.4455 1300.445 1294.365 1300.4445 1294.364 1300.444 1294.363 1300.4435 1300.443 1294.362 1300.4425 -o-pi-mode 1294 361 1300.442 1300.4415 1294.36 50 150 200 250 0 Motor-ist. mm

Case 1 vs bead-pull

DESY.

	pi-mode	0-mode
<i>z</i> ₀ , m	0.2182	0.2182
f_0 , MHz	1300.44604	1294.367528
Z _{scale}	1.025	1.025
f _{scale}	293	460

Case 1 vs bead-pull, BUT no z-scaling

DESY.

	pi-mode	0-mode
<i>z</i> ₀ , m	0.2182	0.2182
<i>f</i> ₀ , MHz	1300.44604	1294.367528
Z _{scale}	1	1
f _{scale}	293	460

Case 4 vs bead-pull

DESY.

	pi-mode	0-mode
<i>z</i> ₀ , m	0.2182	0.2182
f_0 , MHz	1300.44604	1294.367528
Z _{scale}	1.025	1.025
f _{scale}	293	460

Try to simulate the tuning procedure

Case 5 = Case 4 + deformation of the back (cathode) wall → rough scan*

Case 5 + deformation vs bead-pull

	pi-mode	0-mode
z ₀ , m	0.2182	0.2182
f_0 , MHz	1300.44604	1294.367528
Z _{scale}	1.025	1.025
f _{scale}	293	460

NB: only field profile fitted, not exact resonance frequency!

Superfish simulations for deformed full model

Case 6 (+cath+MR+CA+fixed_deformation)

Superfish simulations for deformed full model

NWA measurements: f(pi-mode)=1300.464MHz f(0-mode)=1294.387MHz

Case 6 (+cath+MR+CA+fixed_deformation)

0

-0.5

-1 nuits

-2 -2 -2.5

-3

-3.5

Case 6 (+cath+MR+CA+fixed_deformation) vs bead-pull

	pi-mode	0-mode
<i>z</i> ₀ , m	0.2182	0.2182
f_0 , MHz	1300.44604	1294.367528
Z _{scale}	1.025	1.025
f _{scale}	293	460

Beam momentum with Gun5.1

Single particle tracking using obtained field profile – gun51cavity.txt

E.g., Ecath=60MV/m:

- Max <Pz>=6.55MeV/c
- MMMG phase = 45.3deg

. . .

Summary

Modeling Gun5.1 field profile

- Gun 5 \rightarrow new geometry is implemented in Superfish (H. Qian), including cathode model, but no coaxial coupler antenna
- Nominal geometry yields:
 - Field balance FB=|Ecath/Efullcell|=0.98 for the pi-mode
 - Some feature (dEz/dz) close to $z=0 \rightarrow$ might be simulation challenge
- Several methodic studies:
 - Simplified cathode model (plane wall)
 - Mesh refinement +/-
 - FB=0.97
- The model w/o cathode details is completed with a coaxial coupler antenna with actual nose position (z=222.716mm, Le=28cm) yields FB=0.96
- Beam-pull measurements (A. Oppelt, 31.03.2021)
 - Pi- and 0-modes measured after tuning (cathode wall pressed)
 - Uncertainty in z-scale of bead positions and background frequency determination
- Fit of the simulated field profiles w/o geometry changes \rightarrow huge discrepancy with bead-pull measurements:
 - Needs separate z-shift for pi- and 0-modes, and z-scaling (assuming homogeneous z-mesh) z_{scale} =1.025
- Back (cathode) wall deformation (r=23mm) of the model w/o cathode with antenna \rightarrow -150um better agreement, but no frequency fitted!
- This deformation applied to the full model (cathode and antenna) \rightarrow acceptable agreement with bead-pull measurements for both modes
- The field profile gun51cavity.txt is generated, first beam momentum simulations (single particle tracking) done
- Possible next steps (?):
 - Simultaneous (auto) fit bead-pull + frequencies of both modes, including Le and other (more realistic?) deformations
 - More detailed tolerance studies
 - More accurate bead-pull treatment (linearly sloped bkg see backup slide)

Backup

Case 6 (+cath+MR+CA+fixed_deformation) vs bead-pull (linear slope subtracted)

Bead pull measurements during cavity tuning

Last two measurements of the pi-mode

