COMPARISON OF THE AMOUNT AND DISTRIBUTION OF ENERGY DEPOSITION IN WATER FOR DIFFERENT VACUUM WINDOWS.

Z. AMIRKHANYAN

13.08.21

MOTIVATION

🗸 Goal

Study the effect of electron beam irradiation in a system consisting of vacuum windows of different materials and water target located at 10 cm after the window

✓ Target

- Material: water
- **Geometric size:** $5 \times 5 \times 6$ *cm*
- > Located: **10***cm* after window

✓ Vacuum Windows

- > Titanium foil with a thickness of $50\mu m$
- > Titanium foil with a thickness of $127 \mu m$
- > Titanium coated graphite with $100\mu m Ti$ on $800\mu m C$
- > Kapton foil with a thickness of $412.5\mu m$
- > Graphite foil with a thickness and density are $50\mu m$; $\rho = 2.0 g/cm^3$ on $500\mu m$; $\rho = 1.5 g/cm^3$
- > A foil made of 64.8% Ag; 25.2% Cu and 10% Ti with a thickness of 50 μ m; on graphite with a thickness and density 500 μ m; $\rho = 1.5 g/cm^3$

- Following beam parameters were taken into account in the simulation:
 - Beam energy: 22 MeV
 - Beam RMS size: 0. 1mm, 1mm, 3mm, 5mm, 10mm
- Numerical calculation was used for estimating

quantity and distribution of

- Energy deposition in the windows
- > Temperature distribution in the windows
- Dose deposition in the target (water)
- > Comparison of doses in water for different windows

ENERGY AND ANGLE DISTRIBUTION

Figure 1: The graph on the left shows the energy distribution of **electrons** after leaving the windows. The graph on the right shows the horizontal angular distribution of **electrons** leaving the window. Line colors correspond for different **exit windows**.

ENERGY AND ANGLE DISTRIBUTION

Figure 2: The graph on the left shows the energy distribution of **electrons** after leaving the windows. The graph on the right shows the horizontal angular distribution of **electrons** leaving the window. Line colors correspond for different **exit windows**.

ENERGY AND ANGLE DISTRIBUTION

Figure 3: The graph on the left shows the energy distribution of **electrons** after leaving the windows. The graph on the right shows the horizontal angular distribution of **electrons** leaving the window. Line colors correspond for different **vacuum windows**.

ENERGY DEPOSITION IN WINDOW

Figure 4: Energy deposition along the center of Y direction vertical to beam path where other two dimensions are integrated for space $1 \times l_{wind} mm^2$. Line colors correspond to different exit windows and graph correspond to different RMS beam sizes.

ADIABATIC APPROXIMATION

From the definition of specific heat (c)

$$c = \frac{1}{m} \frac{dQ}{dT} \Leftrightarrow c \times m \times \frac{dT}{V} = \frac{dQ}{V}$$

Where m is the mass, Q is the heat transferred, T the temperature and V the value of region.

If integrate in both sides and consider c and $\rho = \frac{m}{v}$ constant:

$$c \times \rho \int_{T_0}^{T_f} dt = \int_0^E \frac{dQ}{V}$$

Finally:

$$\Delta T = \frac{E}{V} \frac{1}{c \times \rho}$$

Important:

We are assuming adiabatic approximation (negligible heat diffusion)

TEMPERATURE

Beam parameters for exit window

Quantity	Unit	Range
Beam energy	MeV	22
Bunch charge	nC	5
Bunch repetition rate	MHz	1
Train length	μs	10 ³
Train repetition rate	Hz	10

Figure 5: Temperature along the center of Y direction vertical to beam path where other two dimensions are integrated for space $1 \times l_{wind} mm^2$. Line colors correspond to different exit windows and graph correspond to different RMS beam sizes. The normalization was done for the beam parameters shown in the table.

78

Y [mm]

9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6

ENERGY DEPOSITION IN WINDOW

Figure 6: Energy deposition in exit window along the beam path where two transverse dimensions are integrated for central $1 \times 1mm^2$ space with RMS beam sizes 1mm. 9

TEMPERATURE

Figure 7: Temperature in exit window along the beam path where two transverse dimensions are integrated for central $1 \times 1mm^2$ space with RMS beam sizes 1mm.

Resolution 0.1mm

DOSE DISTRIBUTION

Figure 8: Energy deposition in exit window along the beam path where two transverse dimensions are integrated for central $0.1 \times$ **0**. **1***mm*² space.

Line colors correspond for different exit windows.

Resolution 1mm

DOSE DISTRIBUTION

Figure 9: Energy deposition in exit window along the beam path where two transverse dimensions are integrated for central $1 \times$ $1mm^2$ space.

Line colors correspond for different **exit windows**.

Resolution 1mm

DOSE DISTRIBUTION

Figure 10: Dose distribution in XZ plane where direction of z corresponds to beam path. The dose is integral over vertical axis 1mm central slice. The unit of the dose is Gray per 1 pC beam. RMS beam size is 1mm.

✓ Vacuum Windows

- > Titanium foil with a thickness of $50\mu m$
- > Melting temperature: 1670 C

	RMS: 0.1mm	RMS: 1mm	RMS: 3mm	RMS: 5mm	RMS: 10mm
Energy dep. (J/cm^3)	$5.88 * 10^{-4}$	$8.67 * 10^{-5}$	$2.31 * 10^{-5}$	3.82 * 10 ⁻⁶	9.73 * 10 ⁻⁷
Temperature	$1.18 * 10^4$	$1.73 * 10^3$	$4.62 * 10^2$	76.6	-
Dose (target)	9.96 * 10 ⁻³	$7.21 * 10^{-3}$	$4.02 * 10^{-3}$	$10.63 * 10^{-4}$	$3.05 * 10^{-4}$

> Titanium foil with a thickness of $127\mu m$

	RMS: 0.1mm	RMS: 1mm	RMS: 3mm	RMS: 5mm	RMS: 10mm
Energy dep. (J/cm^3)	6.103 * 10 ⁻⁴	$8.99 * 10^{-5}$	$2.38 * 10^{-5}$	3.96 * 10 ⁻⁶	$1.04 * 10^{-6}$
Temperature	$1.22 * 10^4$	$1.80 * 10^3$	$4.76 * 10^2$	79.2	-
Dose (target)	$3.69 * 10^{-3}$	$3.23 * 10^{-3}$	$2.36 * 10^{-3}$	$8.73 * 10^{-4}$	2.87 * 10 ⁻⁴

✓ Vacuum Windows

- > Titanium coated graphite with $100\mu m Ti$ on $800\mu m C$
- > Melting temperature: Ti: 1670 C; Graphite 3800C

	RMS: 0.1mm	RMS: 1mm	RMS: 3mm	RMS: 5mm	RMS: 10mm
Energy dep. (J/cm^3)	$6.07 * 10^{-4}$	$8.95 * 10^{-5}$	$2.41 * 10^{-5}$	3.95 * 10 ⁻⁶	$1.02 * 10^{-6}$
Temperature	$1.21 * 10^4$	$1.79 * 10^3$	$4.81 * 10^2$	79.11	-
Dose (target)	$2.09 * 10^{-3}$	$1.94 * 10^{-3}$	$1.59 * 10^{-3}$	$7.32 * 10^{-4}$	$2.64 * 10^{-4}$

- > Kapton foil with a thickness of $412.5\mu m$
- > Melting temperature: Kapton: 200 C;

	RMS: 0.1mm	RMS: 1mm	RMS: 3mm	RMS: 5mm	RMS: 10mm
Energy dep. (J/cm^3)	$2.28 * 10^{-4}$	$3.37 * 10^{-5}$	9.06 * 10 ⁻⁶	$1.51 * 10^{-6}$	3.87 * 10 ⁻⁷
Temperature	$7.37 * 10^3$	$1.08 * 10^3$	$2.92 * 10^2$	48.5	-
Dose (target)	$9.83 * 10^{-3}$	$7.14 * 10^{-3}$	$4.01 * 10^{-3}$	$10.49 * 10^{-4}$	3.04 * 10 ⁻⁴

✓ Vacuum Windows

- > Graphite foil with a thickness and density are $50\mu m$; $\rho = 2.0 g/cm^3$ on $500\mu m$; $\rho = 1.5 g/cm^3$
- > Melting temperature: Graphite 3800C

	RMS: 0.1mm	RMS: 1mm	RMS: 3mm	RMS: 5mm	RMS: 10mm
Energy dep. (J/cm^3)	$3.05 * 10^{-4}$	$4.51 * 10^{-5}$	$1.19 * 10^{-5}$	$1.97 * 10^{-6}$	$4.82 * 10^{-7}$
Temperature	$1.10 * 10^4$	$1.63 * 10^3$	$4.37 * 10^2$	72.37	-
Dose (target)	$7.02 * 10^{-3}$	$5.54 * 10^{-3}$	$3.42 * 10^{-3}$	$10.12 * 10^{-4}$	$3.01 * 10^{-4}$

> A foil made of 64.8% Ag; 25.2% Cu and 10% Ti with a thickness of 50 μ m; on graphite with a thickness and density 500 μ m; $\rho = 1.5 g/cm^3$

	RMS: 0.1mm	RMS: 1mm	RMS: 3mm	RMS: 5mm	RMS: 10mm
Energy dep. (J/cm^3)	$1.18 * 10^{-3}$	$1.74 * 10^{-4}$	$4.61 * 10^{-5}$	$7.65 * 10^{-6}$	1.99 * 10 ⁻⁶
Temperature	$2.05 * 10^4$	3.01 * 10 ³	$7.97 * 10^2$	132.5	-
Dose (target)	$1.93 * 10^{-3}$	1.81 * 10 ⁻³	$1.50 * 10^{-3}$	$7.08 * 10^{-4}$	2.64 * 10 ⁻⁴