Image roundness evaluation based on the radial profile

M. Krasilnikov
24.06.2021, PITZ Physics Seminar

Motivation

Round beam in a axisymmetric photo injector?

- One practical application: routine PITZ script

GunQuadSymmetriser_Mk2.m

Goal functions:

- f_calcFun2Min.m
goalval = abs(xrms/yrms -1) + abs(xycorr2);

- f_calcFun2Min2,3

Basic idea is taking ellipses of different parts of beam distribution and minimizing their helicity with charge weights...(based on charge cuts)

- f calcFun2Min BivDistr

The beam asymmetry estimation is based on Bivariate normal distribution fit to the image. Bivariate normal distribution is $2-D$ multivariate normal distribution.

Goal: axially symmetric (beam) image

E.g. to be used for the gun quad optimizer as a goal function

Characterization of the transverse profile of the PITZ photocathode laser

M.Sc. Thesis of Roman Martin, 2013

- The goal \rightarrow homogeneous radial laser profile
- Parametrization:
- Exponent G of the Super-Gaussian fit function and the ratio of the semi-axes \rightarrow relative standard deviation $\sigma_{\mathrm{aij}} /<a>$, that quantifies the height of the inhomogeneities + spatial correlation \wedge or the relative covariance
- Radial Fourier projection $p_{r}(m)$ and/or Bessel projection $p_{r}\left(m_{B}\right)$

(b)

(a)

Figure 4.17: Radial Bessel projections of the laser spots shown in Fig. 4.9-4.11. A henter separation of the lines can be observed, but the relative impact can not be compared anymore

Radial profile calculation

Proposed algorithm

1. Find $x 0, y 0$ - center of mass
2. Center the image

$x=\mathrm{xscr}-\mathrm{x0} ; \quad y=\mathrm{yscr} \mathrm{y} 0$;
3. Calculate $X_{r m s}, Y_{r m s}$ and $R_{r m s} \sqrt{X_{r m s}^{2}+Y_{r m s}^{2}}$
4. From the image 2D matrix $A_{i j}$ and x_{j} and y_{i} :
a) Produce 1D arrays $r_{n}=\sqrt{x_{j}^{2}+y_{i}^{2}}$ and $q_{n}=A_{i j}$
b) $\operatorname{sort}\left(r_{n}\right) \rightarrow$ update q_{n}
5. Input parameter $N R 0 \rightarrow$ radius of the $1^{\text {st }}$ radial grid step, e.g., $N R 0=3$;
6. Calculate $R_{0}=R_{r m s} / N R 0$
7. Calculate N_{0} - number of pixels (particles) within R_{0} circle
8. Bin all pixels (particles) on N_{0} base (every N_{0} pixels to one bin):
a) $r_{\text {mesh }, n} \rightarrow$ mean radius value of the n-th bin
b) $p_{\text {mean }, n} \rightarrow$ mean intensity (charge) value of the n-th bin divided by $r_{\text {mesh,n }}$
c) $p_{r m s, n} \rightarrow r m s$ intensity (charge) fluctuation within the n-th bin

Roundness evaluation

Based on the radial profile

1. Input from the radial profile $\left\{r_{\text {mesh }, n} ; p_{\text {mean, } n} ; p_{r m s, n}\right\}$
2. Calculate $\delta v_{n}=\frac{p_{r m s, n}}{p_{\text {mean }, n}}\left(\right.$ skip NaNs from $\left.p_{\text {mean }, n}=0\right)$
3. Calculate weights w_{n}

$$
\begin{aligned}
& W_{1}=\pi \cdot\left(\frac{r_{\text {mesh }, 1}+r_{\text {mesh }, 2}}{2}\right)^{2} \cdot p_{\text {mean }, 1} \\
& W_{n>1}=2 \pi r_{\text {mesh }, n}\left(\frac{r_{\text {mes } h, n+1}+r_{\text {mes }, n-1}}{2}\right) \cdot p_{\text {mean }, n} \\
& w_{n}=\frac{W_{n}}{\sum_{n} W_{n}}
\end{aligned}
$$

The non-roundness:

$$
G F=\sum_{n} w_{n} \delta v_{n} \times 100 \%
$$

Matlab function

[Del,rmesh,pmean, prms,ra,qa,x,y]=GetNonroundness(A,NRO)
\rightarrow Could be already used for GunQuadOptimizer?
@NFS|Measure|scripts|Development|RoundnessEstimator
$\% A$ - image
\%NRO --> radius of the 1 st circle Rrms/NR0
$\% x, y$ - coordinate of the centered image
\%ra qa - radiaa and charge of pixels, sorted
\%rmesh - radial mesh - mean radii N0 particles
\%pmead - radial profile - mean value of pixels
\%prms - radial profile - rms value of pixels
$\%$ Del - weighted area of prms/pmean
To try run the algorithm: RadProfileTester.m \rightarrow examples next slide

Examples of the experimental images

Image roundness evaluation based on the radial profile

Laser at VC2

Electron beam at HIGH1.Scr1

- Next step(s)
- Try to use it as a goal function in the GunQuadOptimizer
- Improve by filtering in azimuthal angle?
- Any other ideas are welcomed!

Conclusions

Image roundness evaluation based on the radial profile

- Radial profile calculation method:
\rightarrow same statistics (number of pixels) for each radial bin
- Figure of merit for a n-th ring:
\rightarrow standard deviation of all pixels within the ring (drawback: noise)
- Figure of merit for a entire image:
\rightarrow Weighted sum of $r m s$ intensity fluctuations

Outlook:

- Try to use for GunQuadSymmetriser_Mk2.m?
- Improve the algorithm by noise filtering (low pass azimuthal filter for each ring intensity)?

