PAUL SCHERRER INSTITUT

R. Ganter

Photocathodes for SwissFEL

16.06.2021

- Photocathode substrate and coating
- QE Performance

- Photocathode substrate and coating
- QE Performance

SwissFEL Electron Gun and Loadlock

Cathode plug

SwissFEL RF Photoinjector

SwissFEL RF Photoinjector: S band, 2.5 Cell; 7 MeV; 100 MV/m; 100 Hz; 2*200 pC

Exchangeable cathode plug(*)

(*) CERN design: CLIC Note 303 (1996)

Photocathode Plug Material

SwissFEL Photocathode Material:

- Copper OFE:
 - 99.99 % purity (< 5 ppm O2);
 - 3D Forged (grain size < 90um)
- RF spring **CuBe₂** (tempered at 315° C for 3 hours)

Gun Dark Current ~ 11 pC (100 MV/m) (measurement courtesy of P. Craievich)

17.06.2021

Photocathode surface preparation

Height Peak to Valley ~ 30 nm

- Surface Finish by Diamond turning (LT Ultra):
 R_a= 5 nm rms
- Ultrasound cleaning to remove contaminants
 & Chemical etching to remove oxyde layer.
- **3.** Vacuum Anealing at 250° C for 10 h to desorb water before coating.

Semiconductor Photocathode: Cs₂Te at SwissFEL

Copper substrate Forged OFE copper (less inclusions, 10 ppm impurities) Ultra precision diamond turning (Ra ~ 3 nm) Ultrasonic Cleaning Soap > Water > Acetone > Alcohol Annealing Cu Photocathode 10 hours at 250 C $QE_{initial} \simeq 10^{-4}$ At 1e-9 mbar

SwissFEL Photocathodes

Cs₂Te Deposition (*):

- Cathode plug heated to 110 deg C
- Evaporation of 15 nm Te
- Evaporation of 25 nm Cs
- pressure stays below 1e-8 mbar during evaporation

Aperture (in front of cathode)

Quartz micro-balance

Cs₂Te layer (ø=1cm; 40 nm)

- successive deposition of Te and then Cs (recipe from CERN: CERN - CLIC Note 299 – E. Chevallay)

- Coevaporation of Cs and Te

SwissFEL Cathode Preparation system

Cs₂Te co-evaporation on Cu Plug

Co-evaporation Cs and Te on Cu_28; V_{anode}=100V - 17.05.2018

Recipe:

- Cu plug annealed 10 h at 250 deg C
- Co-evaporation while monitoring photocurrent

Difficulty:

- Control of stoichiometry

(Cs source heats Te source !)

- No independent Cs thickness monitoring

- Photocathode substrate and coating
- QE Performance

Example of Photocathode Cu_25 currently in SwissFEL

Copper surface **after** annealing (250 deg C – 10 H) and after coating (2015)

- Successive deposition (September 2015) : 15 nm Te + 24.3 nm Cs
- QE in the laboratory: 3%

- Installation in the Gun: August 2019
- Initial QE in the Gun: 1%

Cathode imaging with the solenoid onto a YAG

Some structures and hot spot from cathode

Convolution of laser non uniformities with QE non uniformities

QE map (10 um spot size)

Cathode Cu_25: QE lifetime

September 2019 to today :

- QE varied between 0.7% and 1%
- Laser pulse energy ~ 80 nJ /bunch
- Laser spot size: 170 um rms
- P_{gun} =6.e-11 mbar

100 MV/m; 200 pC/bunch; 100 Hz

Example of a "not so good cathode" : Cu_32

From October 2016 to July 2017: Cathode #32

Cathode#32: Cs₂Te by co-evaporation ; very thin layer < 20nm

No QE decay in 10 Months

Example of cathode Cu_32: Oct. 2016 – Jul. 2017

Electron Beam uniformity issues

- \Rightarrow Exchanged cathode on July 21st 2017 (after 10 months)
- \Rightarrow Cs₂Te detached at some area (dark spot visible by eye on cathode)

SwissFEL Cathode History 2016-2018

From July 2017 to August 2019: Cathode #31

Averaged QE after installation: QE ~ 0.6 %

- Averaged QE dropped by factor 10 after 14 Months (~ 35 mC charge)
- Lifetime until QE~0.1% > 2 years

Cathode #31 (Cs₂Te): July 17 – August 19

10 Hz; 200 pC 100 MV/m P_{cathode} < 1.10⁻⁹ mbar (1.1e-11 mbar at the pump)

Cathode#31:

Cs₂Te by successive evaporation ; ~ 40nm

Cathode develops a **QE hole** after 10 months ! => Gain in uniformity !

- Cathode production very basic: Pressure and cleaning should be improved !
- Since SwissFEL Operation started in 2016: 3 cathodes
- Lifetime seems to get better: 10 months -> 25 months -> ???
- Initial QE ~ 1% (to be compared to the 10-20% of expert laboratory like INFN, BNL, Cornell, ...)

Are Intrinsic emittance and QE related in SC ? In metal, small QE => smaller momentum spread of emitted electrons => less electrons with large transverse momentum => smaller emittance

Phys. Rev. ST Accel. Beams **12**, 074201 (2009)

Wir schaffen Wissen – heute für morgen

Height Profiles

Höhenprofil des Messpunktes 1.

Höhenprofil entlang der Linie, siehe Bild oben.

Profilometry measured on Cu_1

Electrons imaging of cathode Cs2Te_31 on Dec. 4th

Cathode imaging with e-beam on YAG

No defects clearly visible

Courtesy of N. Hiller

Uniformity of Cathode#31

18.08.2017 Uniformity δ_{QE}/QE ~ 15 %

Laser illumination

Photocathode Uniformity

Ref. C.P. Hauri – FEL2011

Electron Beam Profile

 ε_{slice} = 155 nm.rad Charge 200 pC; 300 MeV SwissFEL - PSI