PAUL SCHERRER INSTITUT

Eduard Prat :: FEL Beam Dynamics :: Paul Scherrer Institute

Emittance Measurements at SwissFEL

June 16 2021

>Emittance measurement procedures

Thermal emittance measurements at the SwissFEL Injector Test Facility

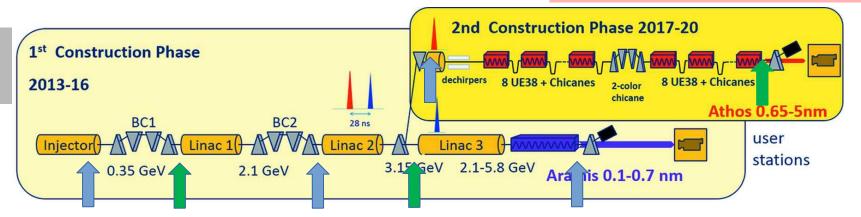
>Emittance optimization and results at SwissFEL

≻Conclusion

Emittance measurement procedures

Thermal emittance measurements at the SwissFEL Injector Test Facility

Emittance optimization and results at SwissFEL


➤Conclusion

Athos:

Soft X-ray FEL, λ =0.65–5.0 nm Variable polarization, Apple-X undulators First users 2021

SwissFEL Injector Test facility Injector including BC1

250 MeV energy Operation: 2010-2014

Emittance measurements locations

Projected and slice

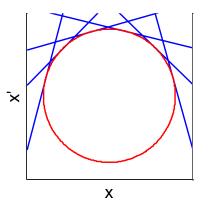
Aramis:

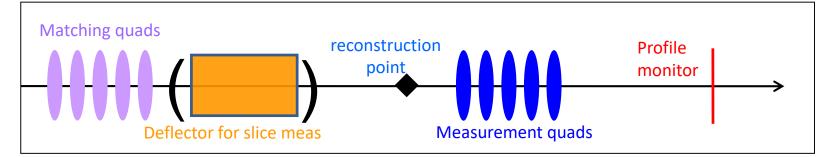
Hard X-ray FEL, λ=0.1–0.7 nm Linear polarization, in-vacuum undulators First users 2018

Main parameters:

Photon wavelength: 0.1–5 nm Photon energy : 0.2–12 keV Pulse duration : 1–20 fs Electron energy : up to 5.8 GeV Electron bunch charge: 10–200 pC Repetition rate: 100 Hz (2-bunches)

>Emittance measurement procedures


Thermal emittance measurements at the SwissFEL Injector Test Facility


Emittance optimization and results at SwissFEL

➤Conclusion

- Measure beam sizes for different phase advances (close to 180°)
- Phase advance is scanned using quadrupole magnets
- Solution for Twiss parameters is used for matching

Beam size monitors:

- Scintillating YAG screen (slice and projected, single-shot, ≈10 µm res)
- Wire scanners (projected only, multi-shot,

higher resolution, $\approx 1 \ \mu m res$)

- We determine the beam size with Gaussian fit $\boldsymbol{\sigma}$
- Streak the beam to measure slice parameters

Emittance measurement errors

Statistical errors

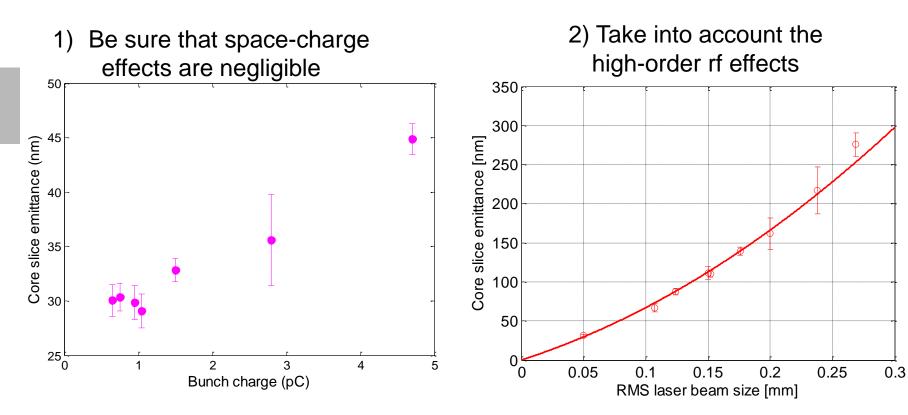
• Machine jitter \rightarrow take several images per phase advance step

Systematic errors

- Profile monitor resolution (see below)
- Screen profile monitor calibration, expected <5% error in emittance
- Other errors (energy, quadrupole, Gaussian fit etc) expected <5% error

Concerning profile monitor resolution

• General:
$$\sigma_M^2 = \sigma^2 + \sigma_R^2 = \frac{\epsilon_n \beta_s}{\gamma} + \sigma_R^2$$


• If beam size at the screen is constant during the measurement:

$$\epsilon_{n,M} = \frac{\gamma \sigma_M^2}{\beta_s} = \epsilon_n + \frac{\gamma}{\beta_s} \sigma_R^2$$
 3 ways to decrease this term

- 1) Increase β_s . Limited by lattice and phase advance (70 m in slice emittance at linac 3)
- 2) Decrease beam energy (γ) (limited by effects such as space charge)
- 3) Improve resolution σ_R Wire scanners have better resolution than screens (only usable for projected)

PAUL SCHERRER INSTITUT

From slice emittance to thermal emittance

- We find the space-charge limit by decreasing the charge until the emittance is constant. Then the charge-density is kept constant for all the laser sizes
- Need to have high-sensitivity profile monitor!

•The high-order effects depend on the rf field (more pronounced in old SwissFEL gun).

•Normalized thermal emittance as first order term of secondorder fit to the data

Emittance measurement procedures

Thermal emittance measurements at the SwissFEL Injector Test Facility

Emittance optimization and results at SwissFEL

➤Conclusion

 $\varepsilon_{th} = \sigma_l \sqrt{\frac{2E_k}{3m_ec^2}} \qquad \begin{array}{l} E_{\mathcal{K}}: \text{ average kinetic energy of the electrons at the cathode} \\ \text{metals:} \qquad 2E_k = \phi_l - \phi_w + \phi_{Sch} = \phi_l - \phi_{eff} \\ \text{semiconductors:} \quad 2E_k = \phi_l - E_g - E_a + \phi_{Sch} \end{array}$

Schottky effect:
$$\phi_{Sch} = \sqrt{\frac{e^3}{4\pi\varepsilon_0}}\beta E_c$$

 Φ_{i} : laser photon energy, Φ_{w} : material work function

 E_{g} : gap energy, E_{a} : electron affinity, $E_{g+} E_{g}$: threshold energy

 β : local field enhancement factor (surface properties), E_c : field at the cathode

Wide range of values in literature: $\Phi_w = 4.66 \pm 0.51$ eV, $E_{g+} E_g = 3.5 - 4.6$ eV, $\beta = 1.5$ and higher

 \rightarrow Thermal emittance can not be estimated accurately and needs to be measured

Overview of thermal emittance measurements

Thermal emittance measurements as a function of

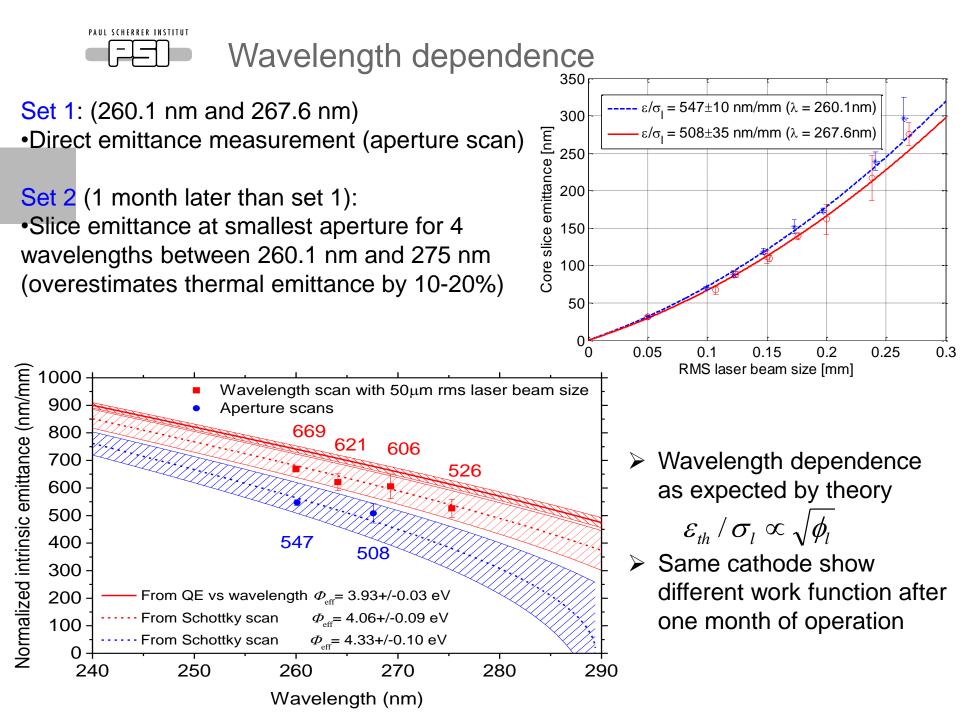
Laser wavelength

- ➢ Field at the cathode
- Cathode material: copper and cesium telluride

Procedures

Emittance: The thermal emittance is defined as the core slice emittance when space-charge and rf effects are negligible. The normalized thermal emittance \varepsilon_{th}/\sigma_{l}\$ is reconstructed by measuring the emittance as a function of the rms laser beam size

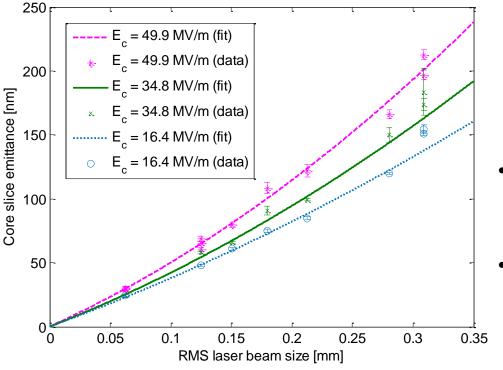
➤The QE is measured by recording the charge at a calibrated BPM (2.6 m downstream of the gun) as a function of the laser intensity.

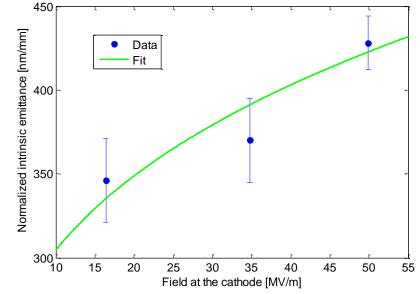

Used lasers

Ti:Sapphire laser + OPA (wavelength dependence measurements)
 ND:YLF laser (all the rest)

Used cathodes

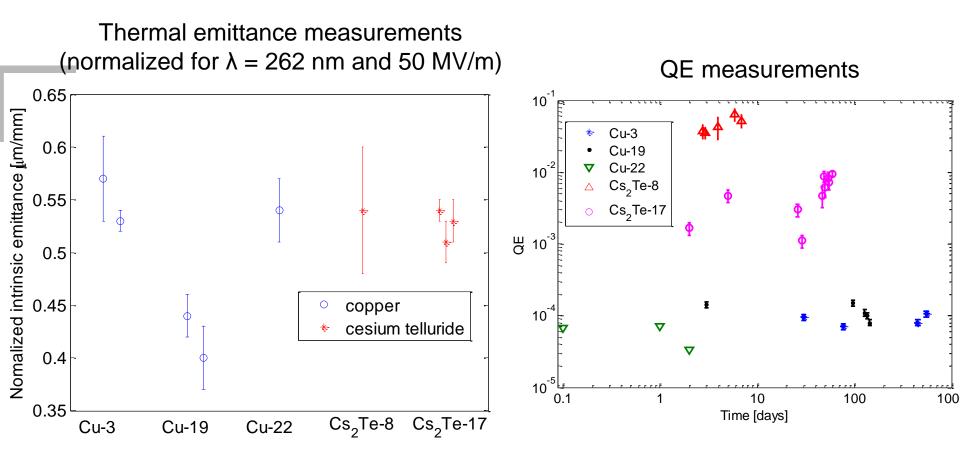
Copper: Cu-3 (laser dependence), Cu-19 (field at the cathode dependence), Cu-22
 Cesium telluride: Cs₂Te-8, Cs₂Te-17


Used guns ≻CTF3 gun: cathode field is 50 MV/m ≻PSI gun: cathode field if 76 MV/m



Field at the cathode dependence

Field at the cathode (MV/m)	ε _{th} /σ _ι (nm/mm)	Quadratic component (nm/mm ²)
49.9	428 ± 16	724 ± 84
34.8	370 ± 25	505 ± 137
16.4	346 ± 25	321 ± 105



 Quadratic component decreases as a function of the gradient → higher order effects are due to rf

- Best fit with $\Phi_w = 4.70 \pm 0.07$ eV and $\beta = 0.79 \pm 0.52$. Good agreement with expectations
- Thermal emittance is reduced by 20% but overall emittance can be worse due to lower beam energy. Moreover QE is suppose to be much worse (60% smaller)

Material dependence: Cu vs Cs₂Te

- > The QE of Cs_2 Te is about 2 orders of magnitude larger than for Cu
- The thermal emittance is equivalent

Conclusion: Cs₂Te for SwissFEL

PAUL SCHERRER INSTITUT

Summary of thermal emittance measurements

Material	Meas. day	ε _{th} /σ, (μm/mm)	Laser wave. (nm)	Cathode field (MV/m)	ε _{th} /σ _ι (norm. *) (μm/mm)
Cu-3	31-10-2012	0.55 ± 0.01	260.1	49.9	0.53 ± 0.01
Cu-3	30-10-2012	0.51 ± 0.04	267.6	49.9	0.57 ± 0.04
Cu-19	25-09-2013	0.44 ± 0.02	262.0	49.9	0.44 ± 0.02
Cu-19	25-09-2013	0.37 ± 0.03	262.0	34.8	0.40 ± 0.03
Cu-19	27-09-2013	0.35 ± 0.03	262.0	16.4	0.43 ± 0.03
Cu-19	04-04-2014	0.40 ± 0.03	262.0	49.9	0.40 ± 0.03
Cu-22	13-04-2014	0.58 ± 0.03	262.0	76	0.54 ± 0.03
Cs ₂ Te-8	04-04-2014	0.54 ± 0.06	262.0	49.9	0.54 ± 0.06
Cs ₂ Te-17	08-04-2014	0.54 ± 0.01	266.6	76.0	0.54 ± 0.01
Cs ₂ Te-17	08-04-2014	0.50 ± 0.02	266.6	76.0	0.51 ± 0.02
Cs ₂ Te-17	08-04-2014	0.52 ± 0.02	266.6	76.0	0.53 ± 0.02

Wavelength dependence Cathode field dependence Cs₂Te measurements

(*) Normalized to 262 nm and 50 MV/m

Measurements at other labs

Cu: ~0.9 μ m/mm [H. J. Qian et al, PRSTAB 15, 040102 (2012)], [Y. Ding et al, PRL. 102, 254801 (2009)] Cs₂Te: > 1 μ m/mm [F. Stephan et al., PRSTAB 13, 020704 (2010)]

Emittance measurement procedures

Thermal emittance measurements at the SwissFEL Injector Test Facility

Emittance optimization and results at SwissFEL

≻Conclusion

Source emittance contributions:

- Emittance from cathode / laser
- Space-charge forces
- RF fields at the gun

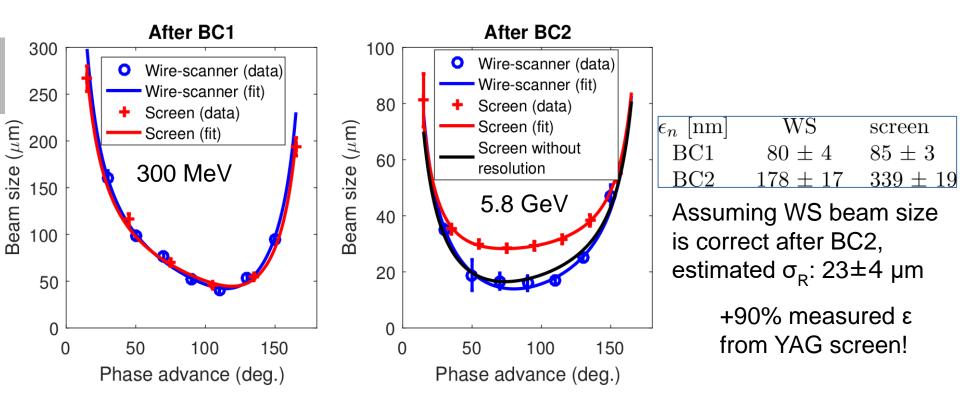
Emittance growth sources

- Transverse coupling
- Coherent Synchrotron
 Radiation
- Leaked dispersion
- Transverse wakefields

Optimized with

- Laser transverse size
- Gun RF gradient (maximum)
- Gun solenoid field
- In design phase:

distance between gun and booster

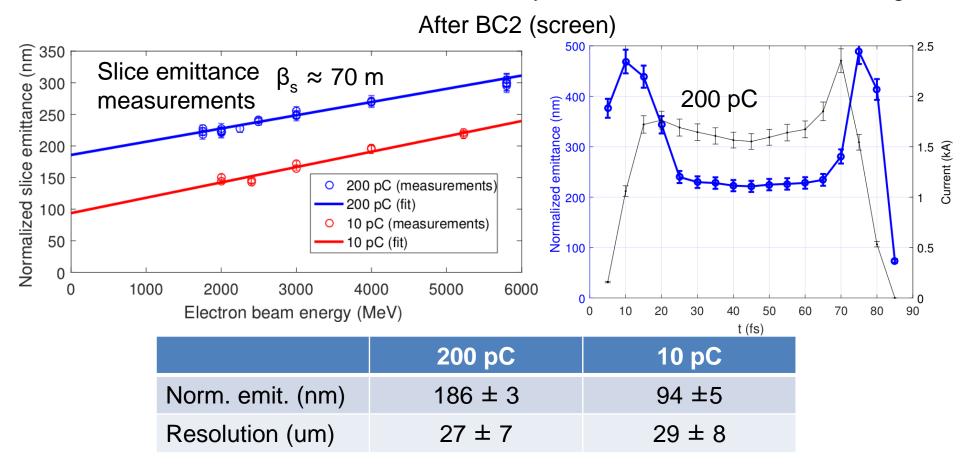

Mitigated with

- Coupling correction
- Compression setup
- Optics in the bunch compressors
- Orbit alignment
- Beam tilt correction

We optimize the emittance for every machine setup

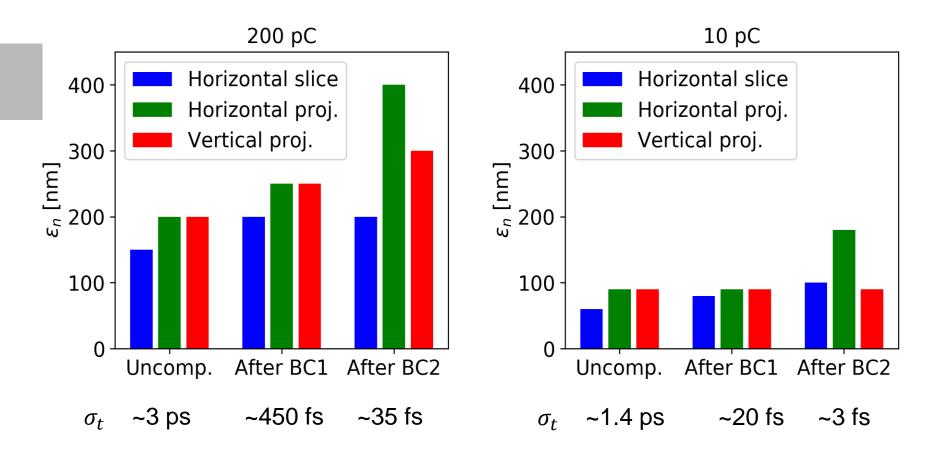
Wire scanners compared to screens

- Perfect agreement at 300 MeV for projected emittance measurements at low energy
- Screens overestimate beam sizes and emittance at high energies
- Wire scanners required for high energies
- What about slice emittance measurement at high energy?


 ϵ

Overcoming screen resolution for slice measurement

 γ


$$\sigma_{n,M} = \epsilon_n + rac{\gamma}{eta_s} \sigma_R^2$$
 Linear equation in

Assuming normalized slice emittance is independent of the beam energy, we can estimate true emittance and screen resolution by measurements for different energies

Summary of measured emittances

- Short-term reproducibility of measured emittance is excellent (about 2%)
- After machine start-up and re-optimization, ε after BC2 varies by about 10-20%
- Quite low emittance values setting new standards for linacs

Emittance measurement procedures

Thermal emittance measurements at the SwissFEL Injector Test Facility

Emittance optimization and results at SwissFEL

≻Conclusion

- We have established a robust, precise and high-resolution procedure to measure the emittance. This is crucial to validate and optimize emittance towards very low values.
- Measured thermal emittance dependence on laser wavelength, cathode field and cathode material (Cu and Cs₂Te). Values around 500 nm/mm. Lessons learned: Cs₂Te for SwissFEL
- Excellent measured emittances at SwissFEL: slice emittance of 200 nm (100 nm) for 200 pC (10 pC) with peak currents at the kA level.