Cs₂Te calculations

Gowri Adhikari Zeuthen, 22/04/2021

Outline

- Experimental QE measurements
- Density functional theory
 - Finding the minimum energy state $Cs_xTe_{(1-x)}$ phase
 - Finding the minimum energy state Cs_2Te crystal structure
 - Band structure calculation *Cs*₂*Te*
 - Effective mass calculation Cs₂Te
- Future plans??

Quantum efficiency measurements

The experimental setup 1

Cathode box

Quantum efficiency measurements

Experimental setup 2

Inside the tunnel only 40 cm space available near cathode box.

Beam on the cathode box window

QE measurements

17/03/2021

Photon energy (eV)	Current (nA)	Light Power (µW)	QE (%) With the lens	Current (nA)	Light Power (μ W)	QE (%) without the lens
5.19	0.0235	0.494	2.4702×10^{-2}	0.021	0.700	1.5270×10^{-2}
4.88	0.0069	0.342	9.8913×10^{-3}	0.00527	0.567	4.6321×10^{-3}
4.18	0.00034	10.8	1.3229×10^{-5}	0.00024	10.4	9.5653×10 ⁻⁶
3.71	0.00017	8.67	7.2843×10^{-6}	0.00012	7.79	5.5536×10^{-6}
3.4	0.00006	30.5	6.7277×10^{-7}	0.00004	24.9	5.4710×10^{-7}
3.18	0.00006	4.89	4.0196× 10 ⁻⁶	0.00006	5.596	4.5476× 10 ⁻⁶
2.95	0.00006	0.24	7.3966× 10 ⁻⁵	0.00007	0.208	8.5377×10^{-5}
2.82	0.00006	0.331	5.1114×10 ⁻⁵	0.00008	0.3004	7.5093×10^{-5}

Comparing experimental setups

Quantum efficiency measurements

Experimental setup 2

Quantum efficiency measurements

Beam size check

Beam size on the window \approx 3mm

Beam on the cathode box window

Rough estimation of the beam on the cathode

Comparing experimental setups

Photon energy (eV)	QE (%) Measurement 1	error	QE (%) measurement 2	error	QE (%) measurement 3	error
5.19	7.9342E-03	2.618E-3	6.9544E-03	2.295E-3	6.7050E-03	2.213E-3
4.88	2.6382E-03	8.706E-4	2.6289E-03	8.675E-4	2.7204E-03	8.977E-4
4.18	5.4458E-05	1.797E-5	4.1475E-05	1.369E-5	4.1764E-05	1.378E-5
3.71	7.5249E-05	2.483E-5	7.7620E-05	2.561E-5	7.7635E-05	2.562E-5
3.4	1.8385E-05	6.067E-6	1.8636E-05	6.150E-6	1.3232E-05	4.367E-6
3.18	8.5076E-05	2.808E-5	8.7425E-05	2.885E-5	7.7629E-05	2.562E-5
2.95	1.9958E-04	6.400E-5	1.9938E-04	6.419E-5	1.8196E-04	5.934E-5
2.82	1.3371E-04	4.412E-5	1.4412E-04	4.756E-5	1.5946E-04	5.262E-5

Comparing experimental setups

Introduction

- To solve many body problems by Schrödinger's equation.
- Only up to one electron problem we can solve Schrödinger's equation exactly.
- It is very hectic to solve the Schrödinger's equation for a N- body system.
- We must involve some approximation to solve the problem a method to obtain an approximate solution to the Schrödinger's equation of a many body system is DFT.
- DFT is a computational quantum mechanical modelling method used in physics ,chemistry, & material science to investigate the electronic structure (ground state) of many body systems .
- Using this theory the properties of many- electron system can be determined by using FUNCTIONALS.
- In DFT instead of considering wave function we considered density functional . DFT : work in terms of density

E=E[n(r)] $\varphi^{2}=n(r)$

Self- Consistency Scheme

- The PWscf code of the Quantum ESPRESSO suite
- Ultra-soft pseudopotentials (USPP) with the generalized gradient approximation (GGA)
- Relativistic, spin-orbit coupling, approximations are included for the 4d, 5d and 6p transition metals
- The convergence tests performed to achieve minimum total energy configuration.
- Formation energy is used instead of total energy to find the minimum energy state for different phases

$$E_f = \sum E_{Cs_x Te_{1-x}} - (E_{Cs} \times no \ of \ Cs \ atoms) - (E_{Te} \times no \ of \ Te \ atoms)$$

Cs-Te crystallization phases

Possible Phases Cs_xTe_{1-x}

CsTe

Orthorhombic crystal structure Pbam (55) a = 5.049 Åb = 6.287 Åc = 11.847 Å

Cs₂Te₃

Orthorhombic crystal structure Cmc21 (36) a = 8.689 Åb = 12.452 Åc = 8.7047 Å

 Cs_2Te_5

Orthorhombic crystal structure Cmcm (63) a = 9.657 Åb = 12.324 Åc = 10.340 Å

CsTe₄

Orthorhombic crystal structure Pbam (55) a = 8.140 Åb = 7.354 Åc = 14.229 Å

Cs_xTe_{1-x}

Cubic Fm-3m (225)	Cubic Fd-3m (227)	Trigonal R-3m (166)	Orthorhombic P212121 (19)	Orthorhombic Fdd2 (13)	Orthorhombic Pnma (62)
-1.036	-0.723	-0.968	-1.020	-0.969	-1.036
-0.990	-0.644	-0.842	-1.021	-0.979	-1.119

Cs_xTe_{1-x}

Orthorhombic crystal structure

Space group pnma (62) - Most common structure

	DFT	Ref (6)	EXP (5)
a (Å)	5.844	5.845	5.871
b (Å)	9.415	9.542	9.109
c (Å)	11.663	11.591	11.474

Cs₂Te band structure

With relativistic and spin orbit coupling

Method	E_{gap}	E _{gap} +SOC (5)	Experimental E_{gap} (7)
PBE	1.78	1.63	
reference	1.76	1.58	3.3

Conduction bands

- I used two different methods to calculate effective mass for different bands.
- Old method uses a parabolic fit to the band and then calculate the effective mass using the curvature of the fit.
- The effective mass at the Fermi energy using

$$m^* = \hbar^2 (\frac{d^2 E}{dk^2}_{k=k_f})^{-1}$$

• New method takes point by point double derivative to calculate the effective mass.

Figure represents the zoomed conduction band plot.

ΓX direction example

This figure represents the lowest conduction band in the ΓX direction. All three parabolic fits for different regions are not good fits to the band.

ΓX direction as an example

- Above figure represents the minimum conduction band in the ΓX .
- Since it is not a perfect parabolic band, I consider small k-point value regions starting from 0 such as (0-0.05), (0-0.1), (0-0.15) ... and finally full range (0-0.5).
- I used a parabolic fit and point by point derivative method to obtain effective mass for each region.
- The right figure represents the obtained effective mass plot against the range.

Red solid line represents the average of red values (0.0912) which is almost within the error bars.

YΓ and ΓZ direction

- These top figures represent the lowest conduction band in the YT and TZ directions.
- Red solid lines represent the parabolic fits to relevant bands.

 These below figures represent the calculated effective masses similar to the ΓX direction.

Future plans???

- Which valence bands contribute to the photoemission?
- Which conduction bands are populated by the incident photon energy?
- Find the absorption coefficient to evaluate the UV absorption depth (how far electrons need to go to get out into the vacuum).
- Find the significance of phonon scattering (using the electron phase velocity).
- Three step analysis for Cs_2Te .

References

- 1. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B., and Wolverton, C. "Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)", *JOM* 65, 1501-1509 (2013).
- 2. Kirklin, S., Saal, J.E., Meredig, B., Thompson, A., Doak, J.W., Aykol, M., Rühl, S. and Wolverton, C. "The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies", *npj Computational Materials* 1, 15010 (2015).
- 3. https://discover.materialscloud.org/topomat/materials/
- A. Jain*, S.P. Ong*, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson (*=equal contributions) The Materials Project: A materials genome approach to accelerating materials innovation APL Materials, 2013, 1(1), 011002.
- 5. I. Schewe-Miller and P. B ottcher, Synthesis and crystal structures of K5Se3, Cs 5 Te 3 and Cs 2 Te, Z. Kristallogr. 196, 137 (1991).
- 6. Holger-Dietrich Sanick, Caterina Cocchi, Electronic Structure of Cesium-based Photocathode Materials from Density Functional Theory: Which Exchange-Correlation Functional Can We Trust? arXiv preprint arXiv: 2101.04596
- 7. R. A. Powell, W. E. Spicer, G. B. Fisher, and P. Gregory, Photoemission studies of cesium telluride, Phys. Rev. B 8, 3987 (1973).

Thank you

Contact

DESY. Deutsches Elektronen-Synchrotron Gowri Adhikari PITZ gowriadhikari@desy.de

www.desy.de

Most recent QE measurements

17/03/2021

Photon energy (eV)	Current (nA)	Light Power (μ W)	QE (%) With the lens	Log (QE%)	Current (nA)	Light Power (μ W)	QE (%) without the lens	Log (QE%)
5.19	0.0235	0.494	2.4702×10^{-2}	-1.6073	0.021	0.700	1.5270× 10 ⁻²	-1.8162
4.88	0.0069	0.342	9.8913×10^{-3}	-2.0048	0.00527	0.567	4.6321×10^{-3}	-2.3342
4.18	0.00034	10.8	1.3229×10^{-5}	-4.8785	0.00024	10.4	9.5653×10^{-6}	-5.0193
3.71	0.00017	8.67	7.2843×10^{-6}	-5.1376	0.00012	7.79	5.5536×10^{-6}	-5.2554
3.4	0.00006	30.5	6.7277×10^{-7}	-6.1721	0.00004	24.9	5.4710× 10 ⁻⁷	-6.2619
3.18	0.00006	4.89	4.0196× 10 ⁻⁶	-5.3958	0.00006	5.596	4.5476× 10 ⁻⁶	-5.3422
2.95	0.00006	0.24	7.3966×10^{-5}	-4.1309	0.00007	0.208	8.5377× 10 ⁻⁵	-4.0687
2.82	0.00006	0.331	5.1114× 10 ⁻⁵	-4.2915	0.0008	0.3004	7.5093×10 ⁻⁵	-4.1244