Evolution of ELLA

Progress and Development

It's OK to be smart: What is Impossible in Evolution? https://www.youtube.com/watch?v=YkS1U5IfSRw

PBS

Towards ultimate low emittance beams \rightarrow 3D ellipsoidal pulses

Spatial Light Modulator (SLM) shaper

 $M(\Omega, y)$

no rotational symmetry

YE

х

NEW: 3D Volume chirp Bragg grating

rotational symmetric

time

10

Flattop in

Ellipsoidal out

Υ

X₀

Collaboration

with IAP, JINR

IR cross

correlation

measurements

- Two methods to generate 3D ellipsoidal photo cathode laser pulses are under study:
 - Mironov et al., Appl. Opt. 55, p. 1630 (2016)
 - Mironov et al., *Laser Phys. Lett.* 13, p. 055003 (2016)

Developing 3D ellipsoidal laser pulses → result of 2018

Christian Koschitzki¹, James Good¹, Matthias Gross¹, Sergey Mironov², Tino Lang³, Lutz Winkelmann³ 1: PITZ / Zeuthen , 2: IAP RAS, 3: DESY HH

1: SLM Shaper

1020

1025

1030

wavelength [nm]

1035

1020

1025

1030

wavelength [nm]

1035

- First shaping unit finished
 Shaping with feedback
- from spectrograph has been demonstrated
- Second unit under construction (full 3D)
- temporal measurements with cross correlation coming up

conversion with angular chirp (AC)

More work needed

Status 2019

Conversion Section and first operation

Matlab Calibration- and Shapermanager

Low Noise RF Amplifier for Synchronisation

Page 4

UV Conversion and Diagnostics upgrades 2020

Page 5

Spotsize [mm]

Developing 3D ellipsoidal laser pulses

- IR Shaping
 - 3 SLM Shapers allow for shaping of all 3 projections
 - Direct feedback loops with IR-Spectrograph allow high quality shaping

Transverse Shaping through

- 4th harmonic nonlinear conversion heavily exaggerates small non-uniformities
- · Possibly insufficient optical resolution

- Spatial Filtering
 - With spatial filtering non-uniformities are removed
 - Temporal/spectral shaping still possible. Some emittance reduction possible in this mode.

Symmetrie problems with "simple beams"

Page 7

Separating transverse and longitudinal

Lessons learned:

50 100 150 200 250 300

- Resolution issues with image transport
- Nonlinear depth of field effect in LBO

100

150

50

VIS at BBO crystal

-0.1

mm

Electron imaging

Transverse Preservation Low charge (20 pC) Short pulse (1.6 ps) Very thin nonlinear crystals LBO (2mm)/ BBO (0.1mm)

UV at Conversion Output

258.5 258.6 258.7 258.8 256.9 257 257.1 257.2 257.3 257.4 257.5 Wavelength [nm]

UV beamline diagnostics

Multi-system <?> for co-linear alignment

- Multi-system: Near-/far- field cameras for position/angle Shaft camera as redundancy cross-check
- Available for MBI & ELLA (co-linear alignment!) Remove lens steering
- Precise: 5 um /5 urad resolution
- Shaft is parasitic

UV beamline reconstruction

United single-stream UV beamline

- Variable coupling telescope
- Translatable prism
- Variable spatial filter (old BSA plates)
- Improve LT controller
- Dual-band (257+515 nm) mirrors (downstream) DESY. | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

Parasitic diagnostic beamsplitter arm

- Spectrograph (improved spatial res.)
- Imaging cross-correlator
- Gregor Michealson?
- (drawings: O:\0_Documentation\laser hut\Nearfieldfarfield)

Dispersion in the UV Section

Prisms are needed to have spectrally broadband conversion. Due to the problems however, it is planed for the next beam time to operate without prisms.

Con: Only thin BBO crystals and thus low charge / narrow spectrum and thus short pulses Pro: No dispersion and thus can use spatial filter and cross correlator

Thin crystal VS thick crystal

Emittance of 0.9 -1.2 in case of thin crystal

Rearrange ELLA Setup

Theoretical expectation for laser shaping influence

Longitudinal

DESY.

European

Theoretical expectation for laser shaping influence

Spatial & Spatial Temporal shapes

Central slice phase space

250 pC, XFEL working point

- Transverse Gaussian truncation is very effective in reducing central slice emittance, but also improving 'halo' brightness.
- Both ellipsoidal and gaussian truncation slightly degrades core emittance.
- □ Beam core brightness is same as photoemission for uniform case.

lasor shapos	100% omit	05% omit	Actio	coro omit	
laser shapes	100 % emit	95 % ennit	Emittance	percentage	
Gauss	0.53	0.38	0.38	94.8%	0.26
Flattop	0.56	0.40	0.37	93.6%	0.25
Parabolic	0.57	0.40	0.37	93.3%	0.26
Elliptical	0.34	0.28	0.33	99.7%	0.30

lacor chapoc	100% omit	05% amit	Actio	coro omit	
laser shapes	E		Emittance	percentage	
Gauss-2	0.31	0.25	0.30	99.6%	0.28
Flattop-2	0.33	0.26	0.31	99.3%	0.28
Parabolic-2	0.33	0.26	0.30	99.1%	0.28
Elliptical	0.34	0.28	0.33	99.7%	0.30

Halo formation

With respect to truncation

Projected phase space

250 pC, XFEL working point

- Core emittance is same for all laser shapes, Laser shaping optimizes 'halo' brightness. Actual beam brightness improvement is much smaller than expected by emittance.
- 100% emittance is not a good figure of merit for beam brightness, too much affected by halo particles. 95% emittance is a better compromise between core and halo particles.

lacor chapos	100% omit	05% omit	Actio	n < 2	coro omit	
laser shapes	100% ennit	En En		percentage		
Gauss	0.70	0.42	0.36	92.0%	0.29	
Flattop	0.61	0.41	0.37	92.9%	0.28	
Parabolic	0.53	0.39	0.37	93.9%	0.28	
Elliptical	0.40	0.32	0.36	98.0%	0.29	

lasor chapos	100% emit	95% emit	Actio	coro omit	
laser shapes			Emittance	percentage	
Gauss-2	0.66	0.37	0.36	94.4%	0.30
Flattop-2	0.53	0.34	0.36	96.0%	0.30
Parabolic-2	0.43	0.33	0.37	97.5%	0.30
Elliptical	0.40	0.32	0.36	98.0%	0.29

Measuring emittance

20% charge cut

PHAROS emittance study

250 pC BSA1mm, 6.3 MeV/c

• <u>10 nm cathode</u>, '4 nC' steering, MBI vs Pharos flattop shaping

Scale2	Scale1	unscaled	EMSY1	Scaling factor	steering	Slit width	cathode	Gun quads	date	Charge
	MBI ~8 ps Gaussian									
0.72	0.57	0.45	0.21	1.26	4 nC steering	10 um	10 nm	Optimization from history	16.03.2021N	250
	Flattop ~9.4 ps									
0.58	0.56	0.54	0.25	1.04	4 nC steering	10 um	10 nm	Optimization from history	17.03.2021N	250

- Shaping effect: scale2 reduce by ~20%, scaling factor reduce by ~20%, but scale1 similar, unscaled higher by 20%
- Ideal simulations
 - Pro: flattop shaping helps phase space in tails, reducing halos
 - Con: flattop shaping distorts more LPS due to sharper edges

	Proj (100%)	slice	Mismatch	dE
<u>Gaussian</u>	0.75	0.42	0.60	3.6
Flattop7	0.58	0.43	0.37	6.3
Flattop10	0.52	0.38	0.35	7.3

Laser Shaping Experiments: Halo

Example from Mikhail Krasilnikov

PHAROS ~9 psflattop, 374A

Chargecut 13% → Skaling factor 1.04

MBI ~8 psGaussian, 373A

Chargecut 21% → Skaling factor 1.26

1. Emittance

 Measure consistent low core emittance

• Find comparable definition for Halos

2. LPS linearity

Hasn't been compared experimentally

Good Emittance + small Halo + good linearity = good beam

DESY.

Laser Shaping Experiments: Longitudinal phase space

250 pC, after removing 1st and 2nd order energy chirp

Transverse uniform case 2.4/5.4/4.7/0.8 keV rms Transverse truncation case 1.5/4.4/3.9/0.8 keV rms

Summary

Achievements

- Theoretically predicted (good) emittance achieved for thick crystal
- Long pulse, high current modulated beams
- Relatively short setup times

TO DO

- Fix dispersion matching in Conversion section
- Investigate homogeneity issues from conversion
- Rebuild Setup in VIS

Old comparison metric

ы Б		profile	cyl	indrical	3D ellipsoidal	
e las	Temporal		Gaussian	Flat-top [fixed to reference [4]]	3D homogeneous	
g	Transverse	distribution	radial homogeneous 3D homogen		3D homogeneous	
	Trms	ps	5.4	6.272	6.1	varied
n G	XYrms	mm	0.385	0.401	0.39	parameters
	Th. emit.	mm mrad	0.326	0.339	0.33	
n l	Ecath.	MV/m		60.58		
°°⊣	Phase	deg		on-crest		
Y	MaxBz	Т	0.2275	0.2279	0.2297	min emittance
ທ 🚺	CDS starting point	m		at LWOTT		
ς Τ	MaxE	MV/m				
	Charge	nC				
	Momentum	MeV/c		23.96		
ž	Proj. cmittancc	mm mrad	1.08	0.639	0. 4 19	
Ш	Th. / proj.	%	30	53	79	
9-	<si. emit.=""></si.>	mm mrad	0.778	0.572	0.392	
am	Rms bunch length	mm	2.163	2.163	2.162	← same
be	Peak current	А	45.4	43.2	46.8	
ы 📒	Long. emittance	pi keV mm	106.7	98.2	88	

