
Evolution of ELLA
Progress and Development

It’s OK to be smart: What is Impossible in Evolution?

https://www.youtube.com/watch?v=YkS1U5lfSRw
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Towards ultimate low emittance beams → 3D ellipsoidal pulses

▪ Two methods to generate 3D 

ellipsoidal photo cathode laser 

pulses are under study:

• Mironov et al., Appl. Opt. 55, p. 1630 

(2016)

• Mironov et al., Laser Phys. Lett. 13, p. 

055003 (2016)
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• Laser shaping → key for optimizing photoinjector brightness.

• Ellipsoidal laser shaping benefits high bunch charge beams 

or CW guns (lower gun gradients).

still WR on lowest

measured projected 

emittances



Page 3

Developing 3D ellipsoidal laser pulses → result of 2018
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Christian Koschitzki1, James Good1, Matthias Gross1, Sergey Mironov2, Tino Lang3, Lutz Winkelmann3

1: PITZ / Zeuthen ,  2: IAP RAS,  3: DESY HH

1: SLM Shaper

• First shaping unit finished 

• Shaping with feedback 

from spectrograph has

been demonstrated

• Second unit under 

construction (full 3D)
• temporal measurements with 

cross correlation coming up

2: Design of shape 

preserving UV-Conversion

IR Input

VIS 

Output

(3 mm)

• Simulations (Chi23d) show feasibility of shape preserving 

conversion with angular chirp (AC)

• More work needed

Spectrograph

Inverted MZ

Interferometer

Pharos laser

SLMSLM
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Status 2019

|   FEL related accelerator R&D at PITZ   |    Frank Stephan  for the PITZ team    |    SLAC-DESY collaboration meeting   |   SLAC, Feb. 8th, 2019

Conversion Section and first operation

Variable TelescopePrism½ λ-Plate

LBO BBO

Bunch length 9.5 ps @ 102 pC & 1mm BSA. 

Measured using Booster Off Crest/ HEDA 

Conversion with double SHG and dispersive Matching

Matlab Calibration- and Shapermanager

Low Noise RF Amplifier for Synchronisation
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UV Conversion and Diagnostics upgrades 2020

LBO crystal

(4mm)

IR Ellipsoid

UV Ellipsoid
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Developing 3D ellipsoidal laser pulses
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IR Spectrogram

▪ IR Shaping 

• 3 SLM Shapers allow for 

shaping of all 3 projections

• Direct feedback loops with 

IR-Spectrograph allow high 

quality shaping

XY-Shaper
Xλ-Shaper

Yλ-Shaper

▪ UV Conversion 

• 4th harmonic nonlinear conversion heavily 

exaggerates small non-uniformities 

• Possibly insufficient optical resolution

UV Conversion IR Spatial Filter

▪ Spatial Filtering

• With spatial filtering non-uniformities 

are removed

• Temporal/spectral shaping still 

possible. Some emittance reduction

possible in this mode. 

UV Pulses

Transverse Shaping through

conversion



Page 7

Symmetrie problems with “simple beams”

BSA

TDS 

Measurements

Spectral Slices

Laser 

Beam 

Profil

e

IR Spatial Filter
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Separating transverse and longitudinal 

Transverse Preservation

Low charge (20 pC)

Short pulse (1.6 ps)

Very thin nonlinear crystals 

LBO (2mm)/ BBO (0.1mm)

Electron imaging

Lessons learned:

• Resolution issues with image transport

• Nonlinear depth of field effect in LBO

time

x

wavelength

UV Spectrograph
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UV beamline diagnostics

| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

Multi-system <?> for co-linear alignment

• Multi-system: 

Near-/far- field cameras for position/angle

Shaft camera as redundancy cross-check

• Available for MBI & ELLA (co-linear alignment!)

Remove lens steering

• Precise: 5 um /5 urad resolution

• Shaft is parasitic
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UV beamline reconstruction

United single-stream UV beamline

⚫ Variable coupling telescope

⚫ Translatable prism

⚫ Variable spatial filter (old BSA plates)

⚫ Improve LT controller

⚫ Dual-band (257+515 nm) mirrors (downstream)
| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

Parasitic diagnostic beamsplitter arm

⚫ Spectrograph (improved spatial res.)

⚫ Imaging cross-correlator

⚫ Gregor Michealson?

⚫ (drawings: O:\0_Documentation\laser 

hut\Nearfieldfarfield)
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Dispersion in the UV Section 

| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

CathodeCathodeCathode
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Prisms are needed to have spectrally broadband conversion. Due to the problems however, it 

is planed for the next beam time  to operate without prisms.

Con: Only thin BBO crystals and thus low charge / narrow spectrum and thus short pulses

Pro: No dispersion and thus can use spatial filter and cross correlator
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Thin crystal VS thick crystal 

Emittance of 0.9 -1.2 in case of thin crystal
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Rearrange ELLA Setup
… or rather rebuild 

Shaper X Shaper YAmplifier Stretcher
Conversion 

to VIS

Conversion 

to UV 

Rebuild with VIS optics Build from scratch
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Theoretical expectation for laser shaping influence

|   FEL related accelerator R&D at PITZ   |    Frank Stephan  for the PITZ team    |    SLAC-DESY collaboration meeting   |   SLAC, Feb. 8th, 2019

Longitudinal 

Solenoid

Space Charge
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Theoretical expectation for laser shaping influence
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Spatial & Spatial Temporal shapes

Space Charge
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Central slice phase space
250 pC, XFEL working point

laser shapes 100% emit 95% emit
Action < 2

core emit
Emittance percentage

Gauss 0.53 0.38 0.38 94.8% 0.26

Flattop 0.56 0.40 0.37 93.6% 0.25

Parabolic 0.57 0.40 0.37 93.3% 0.26

Elliptical 0.34 0.28 0.33 99.7% 0.30

laser shapes 100% emit 95% emit
Action < 2

core emit
Emittance percentage

Gauss-2 0.31 0.25 0.30 99.6% 0.28

Flattop-2 0.33 0.26 0.31 99.3% 0.28

Parabolic-2 0.33 0.26 0.30 99.1% 0.28

Elliptical 0.34 0.28 0.33 99.7% 0.30

❑ Transverse Gaussian truncation is very effective in reducing central 

slice emittance, but also improving ‘halo’ brightness.

❑ Both ellipsoidal and gaussian truncation slightly degrades core 

emittance.

❑ Beam core brightness is same as photoemission for uniform case.
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Halo formation
With respect to truncation
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Projected phase space
250 pC, XFEL working point

laser shapes 100% emit 95% emit
Action < 2

core emit
Emittance percentage

Gauss 0.70 0.42 0.36 92.0% 0.29

Flattop 0.61 0.41 0.37 92.9% 0.28

Parabolic 0.53 0.39 0.37 93.9% 0.28

Elliptical 0.40 0.32 0.36 98.0% 0.29

laser shapes 100% emit 95% emit
Action < 2

core emit
Emittance percentage

Gauss-2 0.66 0.37 0.36 94.4% 0.30

Flattop-2 0.53 0.34 0.36 96.0% 0.30

Parabolic-2 0.43 0.33 0.37 97.5% 0.30

Elliptical 0.40 0.32 0.36 98.0% 0.29

❑ Core emittance is same for all laser shapes, Laser shaping optimizes 

‘halo’ brightness. Actual beam brightness improvement is much smaller 

than expected by emittance.

❑ 100% emittance is not a good figure of merit for beam brightness, too 

much affected by halo particles. 95% emittance is a better compromise 

between core and halo particles.

Noisecut

95% of

electrons
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Measuring emittance

| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

Ratio 

Flattop/Gauss:

1.07 FWHM

0.73 RMS

PHAROS ~10 psflattop, 374A MBI ~8 psGaussian, 373A

0.72/0.57/0.450.58/0.56/0.54

20% charge cut
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PHAROS emittance study

• 10 nm cathode, ‘4 nC’ steering, MBI vs Pharos flattop shaping

• Shaping effect: scale2 reduce by ~20%, scaling factor reduce by ~20%, but scale1 similar, unscaled higher by 20%

• Ideal simulations

• Pro: flattop shaping helps phase space in tails, reducing halos

• Con: flattop shaping distorts more LPS due to sharper edges

250 pC BSA1mm, 6.3 MeV/c

Scale2 Scale1 unscaled EMSY1

Scaling 

factor steering Slit width cathode Gun quads date Charge 
MBI ~8 ps Gaussian

0.72 0.57 0.45 0.21 1.26 4 nC steering 10 um 10 nm Optimization from history 16.03.2021N 250
Flattop ~9.4 ps

0.58 0.56 0.54 0.25 1.04 4 nC steering 10 um 10 nm Optimization from history 17.03.2021N 250

Proj (100%) slice Mismatch dE

Gaussian 0.75 0.42 0.60 3.6

Flattop7 0.58 0.43 0.37 6.3

Flattop10 0.52 0.38 0.35 7.3
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X phase space

Unscaled: 0.46

Scaled: 0.55MBI 20210316N Y phase space
Unscaled: 0.45

Scaled: 0.52 (scale 0.59)
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Laser Shaping Experiments: Halo
Example from Mikhail Krasilnikov

MBI ~8 psGaussian, 373APHAROS ~9 psflattop, 374A

Chargecut 13% → Skaling factor 1.04 Chargecut 21% → Skaling factor 1.26

1. Emittance
• Measure consistent low core 

emittance

2. Halo
• Find comparable 

definition for Halos

2. LPS linearity
• Hasn’t been compared 

experimentally

Good Emittance + small Halo + good linearity = good beam
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Laser Shaping Experiments: Longitudinal phase space
250 pC, after removing 1st and 2nd order energy chirp Transverse uniform case

2.4/5.4/4.7/0.8 keV rms

Transverse truncation case

1.5/4.4/3.9/0.8 keV rms
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Summary

Achievements
• Theoretically predicted (good) emittance achieved for thick crystal

• Long pulse, high current modulated beams 

• Relatively short setup times 

TO DO
• Fix dispersion matching in Conversion section

• Investigate homogeneity issues from conversion

• Rebuild Setup in VIS
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Old comparison metric
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