Electron beam studies from intensity modulated photo-cathode laser pulses for seeding a THz FEL

Georgi Georgiev Zeuthen, 11.03.2021

Introduction

PITZ facility and THz program

- Photo Injector Test Facility at DESY in Zeuthen (PITZ)
- THz program at PITZ
 - Accelerator based THz radiation source
 - For pump-probe experiments at European XFEL
- Proof of principle experiment with undulator
 - THz free electron laser (THz FEL)

Key components in this study

- RF photo-electron gun (Photoinjector)
- Main solenoid of RF gun
- Linac RF cavity
- Transverse deflecting structure (TDS)
- Al-plate for THz generation
- THz diagnostic station

Seeding for FELs

Temporal photocathode laser modulation

- Performance of SASE FEL for PITZ
 - Self-amplified spontaneous emission
 - Saturation energy ~ 500 µJ @ 4 nC
 - Frequency and energy variations
- Seeding for THz
 - Amplify seed signal in FEL
 - Goal: carrier-envelope phase stability
- Photocathode laser pulse modulation
 - Laser intensity \rightarrow electron density
 - Time domain intensity modulations

Pulse energy growth along undulator and final THz spectrum for 100 pulses and their average (simulation, courtesy X.K. Li @ PITZ)

Simulation setup

- Tracking with ASTRA code
 - Space charge effects
 - Initial beam laser pulse
- Gun solenoid field
- Gun final momentum 6,7 MeV/c
- Linac final momentum 20,7 MeV/c

Simulation with modulation by Lyot filter

Beam charge of 500 pC and 1 nC comparison

- Laser pulse
 - Truncated Gaussian envelope
 - Pulse modulation 4 ps period
 - To match experiment
- At minimum transverse size on Al-plate
- Space charge forces
 - Repulsion force between electrons
 - **Degrade** pulse structure
 - Decrease spectral peak

Charge	Peak H. [%]	Freq. [THz]
500 pC	17,4	0,276
1 nC	10,3	0,264

Simulation with modulation by Lyot filter (2)

Longitudinal phase space

- Particle momentum vs time distribution
- Space charge forces
 - Repulsion force between electrons
 - Energy chirped sub-pulses
- Good separation remains in phase space
 - Contrasting beam current

- Modulation recovery
 - Longitudinal phase space rotation
 - Magnetic chicane

Photocathode laser modulation

Lyot filter

- Lyot filter laser bandpass filter
 - Wavelength dependent polarization rotation
 - Polarizer
- Frequency difference beating in THz range

Experiment: electron beam profile

- Measure with beam chirping
 - Energy-trajectory: dipole dispersion
 - Dispersed beam image on screen
- RMS length ~7 ps
- Modulation frequency 0.4 THz
- Spectral peak height: ~20 %

Transition radiation

- Electron passes material boundary
 - Different dielectric constants
 - Ginzburg-Frank formula
- Coherent transition radiation
- TR spectrum measurement
 - Michaelson interferometer

DESY. | Electron beam studies from intensity modulated photo-cathode laser pulses for seeding a THz FEL | Georgi Georgiev, 11.03.2021

Experiment: transition radiation spectrum

Interferogram of THz pulse

- Fourier transform \rightarrow spectrum
- Peak frequency
 - Very stable over hour

Case	Peak [a.u.]	Peak w/o bkg	Freq. [THz]
500 pC @ Imin	0,627	0,593	0,356
500 pC @ Imin-20A + quads	1,18	1,15	0,356
1 nC @ Imin	0,546	0,511	0,324
1 nC @ Imin-20A + quads	0,809	0,781	0,326

DESY. | Electron beam studies from intensity modulated photo-cathode laser pulses for seeding a THz FEL | Georgi Georgiev, 11.03.2021

Experiment: longitudinal phase space

- Particle momentum vs time distribution
- Limited by resolution of measurement
- Modulations revealed with beam chirping
 - Stretching phase in linac cavity

Summary and outlook

- Summary
 - Space charge forces smear modulations from photocathode
 - Sub-pulses separated in longitudinal phase space
- Outlook
 - Start to end simulation with undulator
 - Bunch compressor simulation
 - Alternative techniques of generating modulations
 - Other approaches to seeding

Summary and outlook

- Summary
 - Space charge forces smear modulations from photocathode
 - Sub-pulses separated in longitudinal phase space
- Outlook
 - Start to end simulation with undulator
 - Bunch compressor simulation
 - Alternative techniques of generating modulations
 - Other approaches to seeding

Thank you

This work was supported by the European XFEL research and development program.

Backup

