An overview of FEL seeding methods

And their possible application in THz for PITZ

Georgi Georgiev PPS, 04.02.2021

Overview of talk

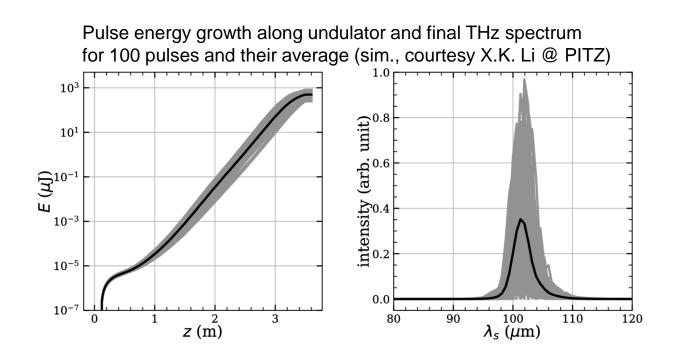
01 External laser pulse

02 Pre-bunched beam

03 FEL oscillator

04 SASE re-amplification

05 Superradiant

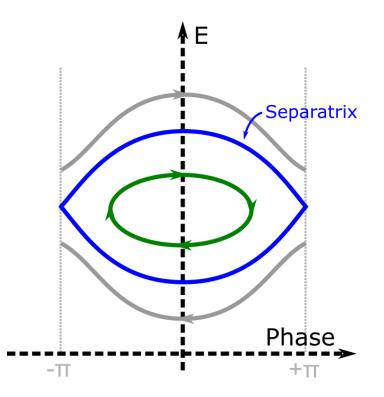

06 Advanced SASE

07 Summary

Introduction

Meeting the spectral and CEP stability requirements

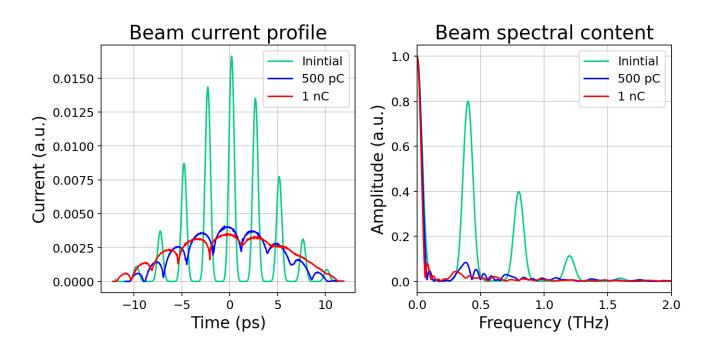
- SASE
 - No seeding
 - Noise in beam signal, stochastic
 - Time and spectral jitter
 - Shorter coherence length
- Seeded FEL
 - Introduce signal at resonant frequency
 - The FEL amplifies the signal
 - Coherent signal coherent output



External laser pulse

Microbunching driven by external field

- Microbunching
 - Energy to density modulation in FEL bucket
 - FEL bucket undulator and radiation fields
- External field at resonant frequency
 - Initial FEL bucket, jump-start microbunching
 - Field properties inherited in FEL output
- External laser pulse coherent seeding
- Application in THz range
 - Power-limited sources (low rep. rate)
 - Difference-frequency generation
 - Parametric amplification
 - Other indirect methods


 $\theta = (k_{und} + k_{rad})z + \omega_{rad}t$

Pre-bunched beam

Beam current modulation

- Beam current modulation at resonance
 - Microbunching in advance
- Methods
 - Photocathode laser modulation
 - Mask in dispersive section
 - Wakefields dielectric lined waveguide
 - Exchanging transverse-longitudinal coordinates
 - Gridded gun, triode
 - Inverse-FEL
 - Laser seed pulse is absorbed
- For THz at PITZ
 - Direct: photocathode laser, mask in BC
 - E-modulation to ballistic bunching: DLW

FEL oscillator

Low-gain FEL

- FEL oscillator undulator in mirror cavity
 - FEL output acts as seed pulse
- Multiple pass device
 - Saturation after many bunches
 - Equilibrium state, mode-locking
 - CEP stable and defined
- For THz and at PITZ
 - Mirror properties for THz (reflectivity, shape, etc.)
 - Side beamline next to the high-power FEL at PITZ

SASE re-amplification

Two stage FEL

- SASE FEL pulse (first undulator)
 - Spectral and time jitter
 - Narrow bandpass filter
- Seeded FEL (second undulator)
 - Filtered SASE pulse as seed
 - Narrow bandwidth
- For THz at PITZ
 - Technically complicated and less affordable
 - Time jitter could remain
 - Bunching after first undulator

Superradiant FEL

Coherent synchrotron radiation (CSR) emission

- Very short bunch in undulator CSR
- Well defined, CEP stable
- Disadvantages
 - Difficult creation and transport
 - Lower beam charge and output power
 - Broad spectrum requires filtering
- Zero-slippage
 - Curved parallel plate waveguide in undulator
 - Short FEL pulse
- Afterburner reuses X-ray FEL short bunch
- Alternative mode for PITZ, reuses components

Advanced SASE schemes

Artificially increased slippage in FEL

Improving of the temporal coherence of SASE

- Slippage between radiation and bunch in FEL
- High-brightness SASE (HB-SASE)
 - Periodically delayed bunch wrt radiation
 - Chicanes between undulators of sectional FEL
- Improved SASE (iSASE)
 - Delay close to the cooperation length
 - Chicanes between undulators of sectional FEL
- Purified SASE (p-SASE)
 - Reduced radiation bandwidth
 - Sub-harmonic undulator in exponential section

- For THz at PITZ
 - Technically complicated and less affordable
 - To be considered for future use

Summary

- Multiple options to improve coherence over SASE
- Introduction of initial signal
- Alternatives to high-gain FEL
- Improving the SASE conecept

Summary

- Multiple options to improve coherence over SASE
- Introduction of initial signal
- Alternatives to high-gain FEL
- Improving the SASE concept

THANK YOU

Sources

Unsorted

- https://doi.org/10.1063/1.2409231
- <u>https://doi.org/10.1063/1.4790428</u>
- He-Ting Li et al 2017 Chinese Phys. C 41 018102
- <u>https://doi.org/10.1117/12.2182284</u>
- https://doi.org/10.1364/JOSAB.24.002509
- <u>https://doi.org/10.1364/OE.27.020221</u>
- <u>https://doi.org/10.1103/PhysRevLett.122.044801</u>

- Terahertz laser modulation of electron beams, J. G. Neumann1, R. B. Fiorito1 et.al., Journal of Applied Physics 105:5
- <u>https://doi.org/10.1016/j.nima.2007.04.129</u>
- <u>https://doi.org/10.1103/PhysRevLett.105.234801</u>
- <u>https://doi.org/10.1103/PhysRevLett.101.054801</u>
- https://doi.org/10.1103/PhysRevLett.66.29
- J A Clarke *et al* 2014 *JINST* **9** T05001