Simple Laser Pulse Shaping

Utilizing dispersion

Matthias Groß Zeuthen, 14. January 2021

Idea

Correlation of optical spectrum with longitudinal pulse shape

- Basic principle of 3D shaping
 - Chirped pulse as input (time wavelength correlation)
 - Spatial separation of wavelengths is done by dispersion, followed by shaping and re-integration
- ELLA: grating + SLM
- Here: lens (chromatic dispersion) + pinhole
 - Circular (or other) symmetry given by pinhole

Simulation Setup to Test Principle

Assumption: transverse flat-top distribution at input; simulation: ZEMAX ray-tracing

- 2 optimized quartz aspheric lenses (4f image relay)
- Beam diameter: 40 mm
- Pinhole diameter: 0.1 mm
- Laser spectral width: 18 nm (center at 257 nm)
 - Distribution is almost flat for Pharos bandwidth (~2 nm)

• Shaping works in principle, but needed: strong dispersion with correct shape

DESY. | Simple Laser Pulse Shaping | Matthias Gross, 14. January 2021

Issues

How to get towards an ellipse with a homogeneous intensity distribution?

- Intensity distribution of standard laser pulse: Gaussian both in time and transverse
 - Transverse
 - Transverse flat-top can be easily prepared with BSA, DOE etc.
 - Longitudinal
 - Preparation with e.g. prism pair and aperture ("longitudinal BSA"), SLM, etc. → lossy, but possible (reduces also available bandwidth)
- Shaping
 - Dispersion of quartz is almost linear for the utilized range → shape is about a truncated double cone
 - Needed: strongly curved area of dispersion

Possible Solution

Kramers-Kronig: relation between absorption and dispersion

- Natural occurrence: near absorption peak
- Problems:
 - Strong absorption necessary for strong dispersion
 - Shape is Lorentzian, not elliptic, but could be a good approximation

- Exotic solutions?
 - Dispersion engineering with nanomaterials
 - Metalens
 - Special grating
 - ...

ZEMAX Simulation

Elliptical index profile in UV for wide spectrum

- Ray tracing with ideal material in UV
- Lenses re-optimized (only small difference)

Refraction

- Roughly elliptical shape can be produced
- Shape can be optimized by adjusting z-position of pinhole

ZEMAX Simulation

Elliptical index profile in green for narrow spectrum (spectrum of second harmonic Pharos)

- Ray tracing with ideal material in green using Pharos FWHM spectral width
- Spot rms radius [mm]

• Lenses re-optimized (only small difference)

• Works reasonably well

ZEMAX POP Simulations

Influence of diffraction – small pinhole?

- Diffraction effects are visible: modulations when cutting into original flat-top (spatial low-pass filter), but shaping functionality is still visible
- Regular structures in and around beam: numerical artifacts

Summary / Outlook

Simple laser pulse shaping

- Summary
 - Novel pulse shaping method based on dispersion and spatial filtering
 - Preliminary simulations show that the method works in principle
 - Pro
 - Simple setup (beam preparation + lens + pinhole)
 - Small setup: portable, stable
 - Con
 - Need lens material with special dispersion
 - Pulse shape is fixed (as with VBG)
 - Low efficiency (absorption in lens)

- Outlook
 - Find way to produce the lens material with designed index profile and low enough absorption in the needed range
 - Only one lens is needed when using mirror and beam splitter
 - Optimize setup to reduce transverse intensity modulations: e.g. bigger pinhole (need bigger lens?)
 - Check with ASTRA simulations the influence of those modulations (how much can be tolerated?)
 - Could help:
 - adjustment of transverse (and longitudinal) intensity distribution with lens material (GRIN etc.)
 - Add spatial intensity modulations in or near pinhole plane (modulated AR coating ...)