Update on slice momentum spread measurement with TDS and HEDA2

Li Xiangkun, PPS, 12/03/2020

Betatron contribution to slice momentum measurement

Fig. 5.14. Energy resolution in phase space

 → to optimize it, the beam size (affected by space charge and emittance) should be small and the dispersion should be large

H. Wiedmann, Particle accelerator physics, third edition. 2007

Cut the beam with EMSY1 50 um slit

• By cutting the beam, only the very center part with a small emittance and charge is left; meanwhile the longitudinal phase space is kept Slice length ~ 0.4 mm

.0

DESY. Update on slice momentum spread measurement

 $\sigma_{p,s}$ vs slice length

M-spread at EMSY1

Effect of energy chirp and others

150

LPS at EMSY1

1.0

Input beam: BSA 1.3 mm, 250 pC, Imain 366 A, 19.3 MeV/c with 2 M macroparticles (from Raffael's simulation)

slice M-spread (keV/c) 80 100 50 Charge (pC) ΔP_Z (keV/c) 0 -50-100Centroid : 20 -150Charge at EMSY1 -2000.0 -22 0 ξ (mm) 300 100 200 400 500 0 Slice length (μ m) Input beam: BSA 1.0 mm, 250 pC, 200 k

TDS voltage scan results

$\sigma_{p,s}^2$ vs TDS voltage squared for 250 pC cut by slit

$\sigma_{p,s}$ vs TDS voltage for three scenarios

