Slice Energy Spread Measurement (Motivation)

Contributions of momentum measurement resolution

- 1. energy (extract the monitor res.)
- 2. TDS voltage (extract the slice E spread)
- Prevolusly we <u>only</u> scan TDS amplitude set point

Betatron contribution could be minimized with the EMSY1 slit cut

4 shifts

First measurement at PITZ w/ charge 10 pC, 19 MeV/c

Slice Energy Spread Measurement (Procedure)

• Contributions of momentum measurement resolution

- momentum range (E⁻¹ fitting) : eg. 12, 14, 16, 18, 20 MeV/c
- TDS scan

٠

SP range (s² fitting) : 5 sps starting from highest streaking

- parameter
 - laser: 6ps Gaussian, BSA: 0.7mm, LEDA: ~6.2MeV/c

DESY. Simulation on slice momentum spread measurement

E scan (TDS off--V=0)

- 1. Prepare 10pC 16MeV/c beam and booster BBA
- 2. Focus beam at PST.s1 with solenoid and focus beam at H2.s2 with steering free H1.q9,.q10,pst.qt5
- 3. Center beam in x at H2.S2
- 4. Capture beam at H1.s4, H1.s5, PST.s1 (make sure same beam size with H1.q9, H1.q10 for all Energy)
- 5. Run LPSgrap at DISP3.s1
- 6. Do step 2-6 for other energies/use ratio of booster E gain to booster sp (rule of three)

TDS scan (new)

- 1. Prepare 20MeV/c beam at H2.S2 and DISP3.s1 (same method)
- 2. Add EMSY1 slit x and prepare beam at H2.S2 again
- 3. Try EMSY3 and check beam at DISP3 if improving
- 4. Measure emittance x with EMSY3
- 5. Choose TDS sp for highest streaking at DISP3.s1
- 6. Run TDS script to find zero crossing phase at DISP3.s1
- Center beam in y at zero crossing phase at DISP3.s1
- 8. Run LPSgrap at DISP3.s1
- 9. change TDS sp and do step 6-8

Slice Energy Spread Measurement (E scan)

Contributions of momentum measurement resolution (TDS off)

- With beam focusing at h2.s2, betatron contribution is minimized
- Scenario based on last results & monitor resolution = scaling factor

alpha (emsy x-stat) =	1.92567
beta(m) (emsy x-stat) =	13.44067
emittance(um) (emsy x-stat) =	0.90933
drift (m) from h2s1 to d3s1 =	2.35680
drift (m) from h2s1 to heda2 =	0.83700
drift (m) from heda2 to d3s1 =	0.69940
rho (m) d3d1	0.59683
bending angle (deg)	60.00000
beta (m) at d3s1 =	2.17569
beta (m) at reference screen =	6.30956
estimated x-rms at reference screen =	0.39160
monitor resolution(keV/c/pixel) =	2.78414
screen scale (mm/pixel) =	0.13187
scale(MeV/c/m) =	21.11307
Disp (m) =	0.90555
p(MeV/c) =	19.11895
E (MeV/c) =	19.12578
rel. gamma =	37.41478
fitting term =	173.68652
corrected centroid sliced p spread(keV/c) =	11.93199
centroid sliced p spread(keV/c) before correction =	13.19190

To extract D3S1 monitor resolution = 0.132 mm Scenario 1: fix betatron x emittance_n at EMSY3 (or energy x sigma_x^2 at h2.s2)

Scenario 2: fix sigma_x at h2.s2

Energy Chirp vs Booster Phase at 17 MeV/c

• Save time by using same charge and previous 17-MeV/c setup

- OMA scan at HEDA1 for booster phase from 5, 10, 15, 20, 25 deg
- Apply rule of three on booster gradient sp to get 17-MeV/c for all phases (booster gradient sp/energy gain)
- Prepare beam with the same method (previous side) to DISP3.s1 and run LPSgrap