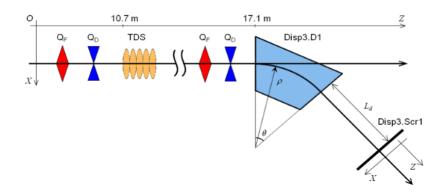
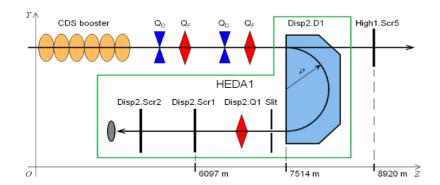
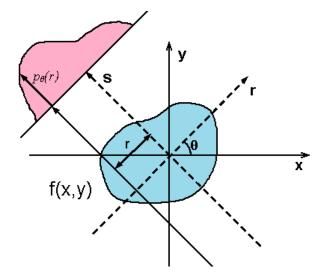

Longitudinal Phase Space Tomography with CDS Booster




LPS characterization of high brightness electron beams

Introduction

- FELs require a high brightness electron beam with the following parameters:
 - small transverse and longitudinal sizes
 - small divergence and energy spread
 - high peak current
- Longitudinal Phase Space Characterization at PITZ
- TDS + HEDA2


Booster Phase Scan + HEDA 1

All figures and equations are taken from Dimitri's thesis

What is Tomography?

Obtain 2D distribution from 1D projection

How is Tomography applied at PITZ?

- measurements of the momentum spectra while varying the electron bunch energy chirp
- energy chirp can be introduced by varying the RF phase of the CDS booster
- resulting momentum distribution can be measured with a dipole spectrometer downstream HEDA1

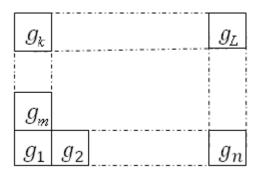
Reconstruction Algorithm

- Algebraic Reconstruction Technique (ART)
- Maximum Entropy (MENT)
- Filtered Back Projection Technique (FBP)

Algebraic Reconstruction Technique (ART)

Relation between projection and image pixel

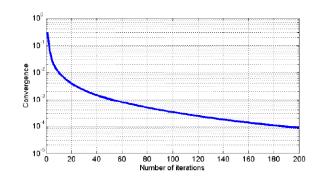
$$p_{ij} = \sum_{l=1}^{L} a_{ijl} \cdot g_l$$
.

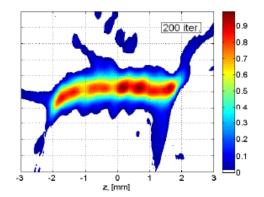

• pij is projection
• gl is reconstructed image pixel
• aijl is built from beam transport function of accelerating structure

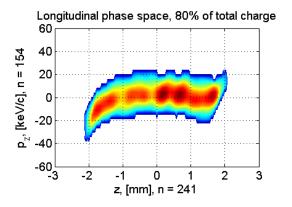
$$p_{z_1} = p_{z_0} + V \cdot \cos\left(\omega(t - \frac{z_0}{c}) - \varphi_0\right)$$

Iterative Procedure

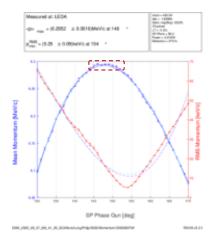
$$g_q^{(k+1)} = g_q^{(k)} + \sum_{ij} \frac{a_{ijq}(p_{ij} - \sum_l a_{ijl} \cdot g_l^{(k)})}{\sum_{nm} a_{inm}^2}$$

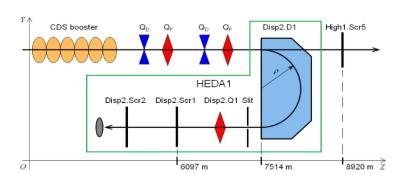

Initial guess is array with 0 elements


Algebraic Reconstruction Technique (ART)


Convergence criterion

$$C(k) = \sqrt{\frac{\sum_{q} \left(g_{q}^{(k)} - g_{q}^{(k-1)}\right)^{2}}{q_{max}}} / \max(g^{(k)})$$

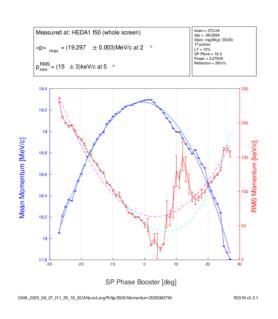

- Reconstructed LPS
 - Reconstruction artifacts because of noise and inconsistency in the measured projection
 - Overestimation of rms longitudinal emittance
 - Charge cut applied to eliminate artifacts

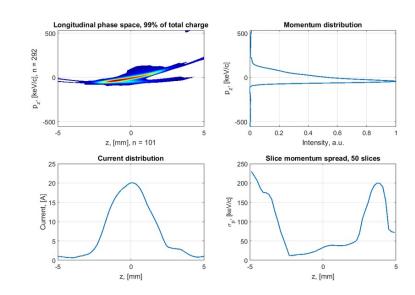


Possible Improvements

✓ Initial matrix definition g(0) from momentum scan of LEDA

✓ Beam focused using Q6 on H1.Scr5 for every phase for momentum measurement at HEDA1


- ✓ NoP adjusted for every phase for best resolution
- ✓ Varying booster power levels and then fitting projections for phase scan simultaneously for reconstruction of LPS before the booster
- ✓ Varying booster power levels for estimation of space charge scaling effect from longitudinal phase space (how bunch length and bunch energy spread scales)
- Introduction of Machine Learning for improved reconstruction


(Proceedings of the 2018 CERN–Accelerator–School course on Numerical Methods for Analysis, Design and Modelling of Particle Accelerators, Thessaloniki, (Greece))

Methodical studies for LPS tomographic reconstruction (run week 41)

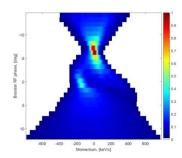
- HIGH1.Scr5 (reference screen for HEDA1 measurements) was not available, HIGH1.Scr4 was used instead (centered, underfocused beam)
- OMA has been modified phase scan is waiting for each phase for magnets/NoP tuning

Gun:6.3MeV/c; MMMG, 250pC; BSA=1.0mm

Longitudinal Emittance (100%) = 116.83 [mm*keV/c]

Data saved in

//afs/ifh.de/group/pitz/doocs/measure/LongPhSp/2020/PhaseSpace/20200927M_11_20_10_1_v4


dpz = 3.734 [keV/c]

dz = 0.100 [mm]

RMS bunch length = 1.59 [mm]

RMS momentum spread = 88.46 [keV/c]

Longitudinal Emittance (99%) = 97.95 [mm*keV/c]

Problems:

- 1. Projections are taken from OMA (not proper bkg/signal processing)
- 2. HEDA1, zoom option
 - \rightarrow off-center momentum is not consistent with whole screen \rightarrow calibration error for the zoom option?
 - → bug in the reconstruction script for zoom option? (cosine modeling curve)

THANK YOU

