Preliminary studies for emittance measurement with quadrupole scan + pepper pot mask

20.08.2020 @ PPS H. Qian

Outline

- Introduction
- SNR for fastscan and quadscan
- Pepper pot design considerations
- Experiment observation of scattered signal
- Possible diagnostic setup at PITZ
- Summary

Emittance measurement of space charge dominated beam

RMS envelope equation with linear space charge forces

•
$$\sigma_{\chi}^{\prime\prime} + k^2 \sigma_{\chi} = \frac{\varepsilon_{n\chi}^2}{(\gamma\beta)^2 \sigma_{\chi}^3} + \frac{I/2I_0}{(\gamma\beta)^3 \sigma_{\chi}}$$

External linear Emittance focusing defocusing

Linear space charge defocusing

Ratio between space charge and emittance term:

 $\rho = \frac{I/2I_0}{\gamma\beta\varepsilon_{nx}^2}\sigma_x^2$

 $\rho \gg 1$, space charge dominated beam $\rho \ll 1$, emittance dominated beam

	PI	TZ	XFEL		
Ek	20	20	130	130	
Charge	250	500	250	500	
Emit	0.6	1	0.6	1	
Peak					
current	20	30	20	30	
Sigx	0.3	0.3	0.2	0.2	
rho	3.66	1.98	0.26	0.14	

• Emittance measurements

- Slit scan & pepper pot (space charge dominated beam)
 - Pro: direct phase space measurement, not rely on magnet calibration, low energy linac
 - Con: need high SNR & long pulse linac for fast scan
 - Example: 250 pC @0.3 mm rms, 50 um slit
 - Beamlet charge: 17-0.17 pC @center→ 3σ
 - Beamlet SNR variation >100 (if 1% EMSY projection is measured)
- Quad scan (emittance dominated beam)
 - Pro: full charge, SNR variation 1~4, short pulse linac
 - Con: need reliable magnet calibration, high energy linac
- Pepper pot + Quad scan (space charge dominated beam)
 - Work with low energy and short pulse linac → good for injector test facility
 - SNR variation 1~4

Emittance vs SNR

Assuming Gaussian phase space

• Fastscan

Quad scan

Beam with non-Gaussian phase space

Beam with halos

- 500 pC beam ASTRA simulation
 - BSA1.3mm, uniform VC2, 6 ps Gaussian laser
 - EMSY1 beam size: 0.358 mm rms
 - Emittance ~1 mm.mrad, ~33 A peak current
- Much more sensitive to noise compared to Gaussian beam
 - A 2000 statistics @EMSY1 only reaches 90% of the real rms size

×10⁻³

-3

-2

0

-3

-2

-1

0

Beam with non-Gaussian phase space

Beam with halos

- 500 pC beam ASTRA simulation
 - BSA1.3mm, uniform VC2, 6 ps Gaussian laser
 - EMSY1 beam size: 0.358 mm rms
 - Emittance ~1 mm.mrad, ~33 A peak current
- A virtual quad scan w/o space charge
 - 2000 statistics (0.5%) → scaling factor ~1.1 → full beam emittance
 - 1000 statistics (1%) \rightarrow Waist location changed \rightarrow Gaussian core emittance

Beam with non-Gaussian phase space

Beam with halos

Pepper pot design considerations

- Pepper pot consideratios
 - Charge transmission: $\left(\frac{\pi D^2}{4P^2}\right) < 10\%$

	Р	ITZ	XFEL		
Ek	20	20	130	130	
Charge	250	500	250	500	
Emit	0.6	1	0.6	1	
Peak current	20	30	20	30	
Sigx	0.3	0.3	0.2	0.2	
rho	3.66	1.98	0.26	0.14	

• Pitch dimension (Spatial sampling rate)

XFEL quad scan err ~2% 0.5 nC@130 MV

PITZ 50um slit scan err ~10% 0.25 nC @20 MV

Pepper pot mask examples

						-
	UCLA	PSI	PSI	PSI	PSI	Unit
D	15	20	50	20	50	um
P	85	150	150	250	250	um
Thick	0.025	0.2	0.2	0.2	0.5	mm
Atten	2.45%	1.40%	8.73%	0.50%	3.14%	
angle accpt	600	100	250	100	100	mrad
beam angle	~1	~1	~1	~1	~1	mrad

Pepper pot design considerations

- Pepper pot consideratios
 - Mask thickness T
 - CSDA range from NIST database (Continuous slowing down approximation range)
 - ~4 MeV → 3.059 g/cm^2 → 1.6 mm
 - ~20 MeV \rightarrow 9.594 g/cm² \rightarrow 5.0 mm
 - ~4 MeV mask thickness: 0.025 (1/64 CSDA) ~ 0.5 mm (1/3 CSDA)
 - ~20 MeV: ~0.1 (1/64 CSDA) ~ 1.7 mm (1/3 CSDA)?
 - Angle acceptance $\frac{D}{T}$ >1 mrad

Pepper pot mask examples

	UCLA	PSI	PSI	PSI	PSI	Unit
D	15	20	50	20	50	um
Р	85	150	150	250	250	um
Thick	0.025	0.2	0.2	0.2	0.5	mm
Atten	2.45%	1.40%	8.73%	0.50%	3.14%	
angle accpt	600	100	250	100	100	mrad
beam angle	~1	~1	~1	~1	~1	mrad

Pepper pot design considerations

FLUKA simulation

- 20 MeV beam scattering with tungsten mask (by Zohrab)
 - 0.2 mm to 1 mm tungsten thickness are simulated
 - Large scattering angle, 0.34 0.86 rad (FWHM)
 - Intensity of penetrated electrons almost same as input beam
 - Energy loss quite limited due to thin tungsten mask

Pepper pot examples

~300 euro per mask, total 4 masks, quote from 2007 Laser Technologie GmbH in Berlin

• A few low energy masks

• A mask for 20 MeV beam

PSI 20 um x 150 um x 0.2 mm

PSI 20 um x 250 um x 0.2 mm

	UCLA	PSI	PSI	PSI	PSI	PITZ	Unit
D	15	20	50	20	50	50	um
Р	85	150	150	250	250	150	um
Thick	0.025	0.2	0.2	0.2	0.5	0.5	mm
Atten	2.45%	1.40%	8.73%	0.50%	3.14%	8.73%	
angle accpt	600	100	250	100	100	100	mrad

D50 um x P150 um \rightarrow 40 pC @0.5 nC D35 um x P150 um \rightarrow 20 pC @0.5 nC

ESMY1 image

Before and after pepper pot mask

A beam test with 1 mm tungsten plate

20A.08.2019, summer student project

- 500 pC x 20 pulses x 10 Hz, ~20 MeV
- EMSY1 1 mm tungsten plate fully block the beam
- Q3/Q4 doublet scan
- Record 20 images for scattered signal with high1.scr5 LYSO screen, 0 dB gain

No focusing

0.05 A

0.1 A

0.2 A

0.5 A

-20

-10

0 └─ -20

-10

-20

-10

0

-20

-10

4000

3000

2000

1000

0

-20

Possible setup for PITZ emittance

- Possible setup for projected emittance
 - Pepper pot mask @EMSY1, 10 mm aperture @high1.scr2
 - Aperture @high1.scr2, maybe not necessary?
 - 0.5 mm thick plate \rightarrow <1.6% after 10 mm aperture
 - 1.0 mm thick plate \rightarrow <1.0% after 10 mm aperture
 - Q3/Q4 to match beam size on H1.scr3, Q5/Q6 for quad scan on PST.scr1 LYSO screen
 - or
 - Q5/Q6 to match beam size on H1.scr5, Q7/Q8 for quad scan on PST.scr1 LYSO screen
- Similar setup for slice emittance with quadrupole scan

Summary and outlook

- Analytical analysis based on Gaussian beam shows an advantage for quad scan over fastscan w.r.t. SNR
- Calculations & FLUKA simulations of a tungsten peperpot mask for 20 MeV beam are done
- Experiments of a 1 mm tungsten mask shows negligible scatter signal after quad focusing
 - Scatter signal should be even lower when reducing pulse number towards single pulse operation
 - If use Q5/Q6 and pst.scr1 for measurements, scatter signal is expected to be lower
- Further tests
 - Test Q5/Q6 and pst.scr1 for scatter signal intensity
 - Install a 0.4 mm tungsten plate at EMSY1 for comparison study, 0.4 x 40 x 50 (mm) tungsten plate exists
- Should we pursue such a diagnostic at PITZ?
 - If works, a diagnostic for gun test facility with a short pulse & low energy linac, e.g. APEX like facility.
 - Direct emittance comparison between slit scan and quad scan, using the same beam.
 - A new tool for slice emittance measurement at PITZ.