Preliminary results of 5 nC beam simulation for radiation application in the tunnel annex

Xiangkun Li, PPS, August 20 2020,

Outline

- Introduction
- Injector optimization
- Beam transport in the dogleg
- Discussion
- Summary

Introduction Background

A second beamline parallel to the THz SASE FEL in the tunnel annex is being considered for radiation application

Parameter	Value	Unit
Charge	5	nC
Bunch length	30 - 100	ps
Beam size	?	mm
Momentum	~20	MeV/c

 Currently start-to-end simulation is undergoing to check if such a beam could be produced there with our photo-injector and how the beam will look like

Introduction

Consideration on the simulation

- To relax space charge at 5 nC
 - Larger laser spot size with higher gun gradient of **60 MV/m**
- Controllable bunch length (30 to 100 ps FWHM)
 - Relatively long laser pulse at emission
 - Positive and linear energy chirp ← gun and booster phases
- Solenoid optimization for best emittance and easier transport
- Achromatic design of dogleg (R16=R26=0)?

Injector optimization Laser profile scan

- Gun gradient 60 MV/m, MMMG phase
- Laser is uniform transversely and flattop longitudinally

Injector optimization

Gun and booster phase scan

- A linear energy chirp is preferred for bunch length manipulation later
- Definition of chirp and higher order momentum spread

positive chirp => stretching longitudinally in the chicane

Injector optimization Gun and booster phase scan

• A linear energy chirp is preferred for bunch length manipulation later

- Gun phase: -5 degree => better emittance and smaller higher order energy spread;
- Booster phase: -20 (negative chirp), -10 (minimum spread), 0 (positive chirp)

DESY. X.-K. Li | 5 nC beam simulation for radiation application in the tunnel annex

Injector optimization Solenoid current scan

• The best solenoid current is around 388 A for all three booster phases

Injector optimization

Longitudinal phase space at the best solenoid current

• Chirp vs booster phase at EMSY1

Case 1

Injector optimization

Beam transport to the dogleg entrance

- Three triplets are used to focus the beam down to the dogleg entrance (z=26 m)
- The main difference is that the momentum spread is large (~1.5 %) at the dogleg for Case1 but reaches the minimum (~ 0.3%) for Case 2

DESY. X.-K. Li | 5 nC beam simulation for radiation application in the tunnel annex

Beam transport in the dogleg (Case 1) With only the dipoles

Parameter	Value	Unit
Angle, θ	60	degree
Radius, ρ	0.4	m
Gap	50	mm
Translation	1.5	m

Beam transport in the dogleg (Case 1) With only the dipoles

• The transverse beam size and emittance, the bunch length have increased

DESY. X.-K. Li | 5 nC beam simulation for radiation application in the tunnel annex

Beam transport in the dogleg (Case 1) With only the dipoles

• The bunch is stretched after dogleg (28.5 ps -> 105 ps FWHM), but with P_x correlated along the bunch (*z*) and P_z correlated across the bunch (*x*) in the deflection plane

=> huge emittance and rapid growth of beam size

- Q1 and Q4: removing the dispersion and focusing the beam horizontally
- Q2 and Q3: focusing the beam vertically

Parameter	Value	Unit
Angle	60	degree
Radius	0.4	m
Gap	50	mm
Translation	1.5	m

Optics of xxx facility

Zmin= 0.00 m Zmax= 3.50 m Xmax= 1.0 cm Ymax= 1.0 cm Ap * 2.00 Thu Aug 13 13:14:39 2020

Optimized with TRANSPORT:

Method:

Use beam matrix and transfer matrix + random search

Constraint: Q1 = Q4, Q2 = Q3 Translation = 1.5 m

Goal:

R16 = R26 = 0 (Achromatic) Matched beam size and emittance at the dogleg exit

http://aea.web.psi.ch/Urs_Rohrer/MyWeb/trancomp.htm

• The beam sizes are maintained after the dogleg

DESY. X.-K. Li | 5 nC beam simulation for radiation application in the tunnel annex

• Longitudinal phase space before and after dogleg

• Tuning the first and last quadrupole gradients simultaneously

Beam parameters 0.7 m downstream the 2nd dipole

Long. profiles

Beam transport in the dogleg (Case 1) Summary

- The dispersion results in a huge emittance and a rapid growth of beam size in the horizontal (deflection) plane; meanwhile the bunch is stretched
- The dispersion can be almost removed by introducing a symmetric focusing optics; but cannot be got rid of due to the relatively large energy spread
 - The emittance is about one order of magnitude smaller
 - The bunch length can be tuned by the quad gradient only in a small range
- The optimized quadrupole gradient needs an max. excitation current of ~ 15 A
 - Derived from High1.Q5 calibration -> ~0.65 T/m/A

Injector optimization

Longitudinal phase space at the best solenoid current

• Chirp vs booster phase at EMSY1

Case 1

Beam transport in the dogleg (Case 2) With only the dipoles

Parameter	Value	Unit
Angle, θ	60	degree
Radius, ρ	0.4	m
Gap	50	mm
Translation	1.5	m

Beam transport in the dogleg (Case 2) With only the dipoles

DESY. X.-K. Li | 5 nC beam simulation for radiation application in the tunnel annex

Beam transport in the dogleg (Case 2) With only the dipoles

• The bunch is over-compressed in the dogleg; the divergence is big in the deflection plane, resulting in big emittance and rapid growth of beam size

- Q1 and Q4: removing the dispersion and focusing the beam horizontally
- Q2 and Q3: focusing the beam vertically

Parameter	Value	Unit
Angle	60	degree
Radius	0.4	m
Gap	50	mm
Translation	1.5	m

Optics of xxx facility

Zmin= 0.00 m Zmax= 4.00 m Xmax= 1.0 cm Ymax= 1.0 cm Ap * 2.00 Wed Aug 19 12:36:13 2020

Optimized with TRANSPORT:

Method:

Use beam matrix and transfer matrix + random search

Constraint: Q1 = Q4, Q2 = Q3 Translation = 1.5 m

Goal:

R16 = R26 = 0 (Achromatic) Matched beam size and emittance at the dogleg exit

http://aea.web.psi.ch/Urs_Rohrer/MyWeb/trancomp.htm

• The beam sizes and emittances are maintained after the dogleg

• Longitudinal phase space before and after dogleg

Tuning the first and last quadrupole gradients simultaneously •

Beam parameters 0.7 m downstream the 2nd dipole

Long. profile

The shape is held up to $Q_1/Q_{1.0} = 1.02$

Beam transport in the dogleg (Case 2) Summary

- The dispersion also results in a big emittance and a growth of beam size in the horizontal (deflection) plane; meanwhile the bunch is over-compressed
 - The emittance is x10 smaller than that for Case 1, thanks to smaller energy spread
- The dispersion can be removed by introducing a symmetric focusing optics
 - The emittance is only 10-20 um, x5 smaller than Case 1
 - The bunch length can be tuned by the quad gradient also in a small range
- The optimized quadrupole gradient needs an max. excitation current of ~ 19.5 A
 - Derived from High1.Q5 calibration -> ~0.65 T/m/A

Discussion Limit of quadrupole gradient

• With TRANSPORT, the gradients of the quadrupoles have been optimized against the drift length between dipoles (or translation), the bending radius and

Discussion

If the transverse beam emittance and size are not important

Then prepare the radiation experiment right after the 2nd dipole (or after two quads with a short drift length); only two dipoles are necessary with the bunch length controlled by the booster phase but with bad control transversely

- Start-to-end simulations have been carried out in the context of radiation application at PITZ with the specified heavy charge of 5 nC
- Attention was paid on the beam transport in the dogleg for two types of electron bunches (positive and negative energy chirps)
 - For a dispersive dogleg with just two dipoles, the bunch length can be well controlled by tuning the booster phase thus the chirp, but with a poor beam quality in the deflection plane
 - For an achromatic dogleg, the bunch length can be only tuned in a small range, but the beam quality can be maintained in the deflection plane, especially when the energy spread is small
- For further simulations, more specifications on the beam quality and more space for the dogleg would be helpful

Backup

Plane of symmetry
Achromatic condition

$$D_x(A \to B) = \begin{pmatrix} D_{x11} & D_{x12} & D_{x13} \\ D_{x21} & D_{x22} & D_{x23} \\ 0 & 0 & 1 \end{pmatrix}$$

$$M_x(A \to C) = \begin{pmatrix} 1 + 2D_{x12}D_{x21} & 2D_{x12}D_{x22} & 2D_{x13}D_{x21} \\ 2D_{x11}D_{x21} & 1 + 2D_{x12}D_{x21} & 2D_{x13}D_{x21} \\ 0 & 0 & 1 \end{pmatrix}$$

 $M_{x13} = M_{x23} = 0 \Rightarrow D_{x13} = 0$ Achromatic!