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Introduction

* A second beamline parallel to the THz SASE FEL in the tunnel annex is being
considered for radiation application

Radiation

Charge 5 nC
Bunch length 30-100 ps
Beam size ? mm
Momentum ~20 MeV/c

THz

» Currently start-to-end simulation is undergoing to check if such a beam could be
produced there with our photo-injector and how the beam will look like
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Introduction

 Torelax space charge at 5 nC

» Larger laser spot size with higher gun gradient of 60 MV/m
« Controllable bunch length (30 to 100 ps FWHM)

* Relatively long laser pulse at emission

« Positive and linear energy chirp « gun and booster phases

» Solenoid optimization for best emittance and easier transport

« Achromatic design of dogleg (R16=R26=0) ?
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Injector optimization

* Gun gradient 60 MV/m, MMMG phase

« Laser is uniform transversely and flattop longitudinally
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Injector optimization

* Alinear energy chirp is preferred for bunch length manipulation later

* Definition of chirp and higher order momentum spread
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Injector optimization

* Alinear energy chirp is preferred for bunch length manipulation later
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« Gun phase: -5 degree => better emittance and smaller higher order energy spread;
» Booster phase: -20 (negative chirp), -10 (minimum spread), 0 (positive chirp)
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Injector optimization

» The best solenoid current is around 388 A for all three booster phases
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Injector optimization

» Chirp vs booster phase at EMSY1
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Injector optimization

» Three triplets are used to focus the beam down to the dogleg entrance (z=26 m)

« The main difference is that the momentum spread is large (~ ) at the dogleg for
Case1 but reaches the minimum (~ ) for Case 2
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Beam transport in the dogleg (Case 1)
With only the dipoles

Parameter | Value | nit__ sppeaton
Angle, 6 60 degree
Radius, p 04 m
Gap 50 mm
Translation 1.5 m
THz
b Xo

5 [Mu My, M13] X' Mi3 =2[Lsin€ + p(1 —cosB)]cosb # 0
X

or\ |’ 2[Lsin@ + p(1 — cosB )] sin 6
0 M3z = P

0
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Beam transport in the dogleg (Case 1)

 The transverse beam size and emittance, the bunch length have increased
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Beam transport in the dogleg (Case 1)

« The bunch is stretched after dogleg (28.5 ps -> 105 ps FWHM), but with P, correlated
along the bunch (z) and P, correlated across the bunch (x) in the deflection plane

=> huge emittance and rapid growth of beam size
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Beam transport in the dogleg (Case 1)

Insertion of quadrupoles between dipoles

* Q1 and Q4: removing the dispersion and focusing the beam horizontally

« Q2 and Q3: focusing the beam vertically

Radiation

 Parameter | Value | Unit__ application
Angle 60 degree

Radius 0.4 m

Gap 50 mm

Translation 1.5 m

THz
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Beam transport in the dogleg (Case 1)

Optimized with TRANSPORT:

Method:
Use beam matrix and transfer
matrix + random search

Constraint:
Q1=Q4,Q2=Q3
Translation =1.5m

Goal:

R16 = R26 = 0 (Achromatic)
Matched beam size and emittance
at the dogleg exit
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http://aea.web.psi.ch/Urs Rohrer/MyWeb/trancomp.htm
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Beam transport in the dogleg (Case 1)

« The beam sizes are maintained after the dogleg

B_
E B:_ ABI T T
E E E E T T T T
= = 1 e — z
n 6 ]
2 et e
5 2f E'i:- .
0 wor
— [ LEI 2 __ -
5102 50; | | |
P —_
E 101_ - a t | T T T T | T T T T | T T T T T T T T | T T T T
= 210t |k X Y
@ : 10 times sinaller
- gl0°
@
“E;; Stk
c\_ﬂi‘ L‘:ﬁ |§ | - Lo —— IAMI.-'_II [ A |
255 26.0 265 27.0 275 280
Z (m)
S (m . . .
(m) Astra simulation with SC

Transport with first-order transfer matrix

DESY. X.-K. Li | 5 nC beam simulation for radiation application in the tunnel annex Page 16/32



Beam transport in the dogleg (Case 1)

» Longitudinal phase space before and after dogleg
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Beam transport in the dogleg (Case 1)

» Tuning the first and last quadrupole gradients simultaneously
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Beam transport in the dogleg (Case 1)

« The dispersion results in a huge emittance and a rapid growth of beam size in
the horizontal (deflection) plane; meanwhile the bunch is stretched

* The dispersion can be almost removed by introducing a symmetric focusing
optics; but cannot be got rid of due to the relatively large energy spread

» The emittance is about one order of magnitude smaller

« The bunch length can be tuned by the quad gradient only in a small range

» The optimized quadrupole gradient needs an max. excitation current of ~ 15 A

» Derived from High1.Q5 calibration -> ~0.65 T/m/A
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Injector optimization

» Chirp vs booster phase at EMSY1
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Beam transport in the dogleg (Case 2)

With only the dipoles

Parameter | Value | Unit__ st
Angle, 6 60 degree
Radius, p 04 m
Gap 50 mm
Translation 1.5 m
THz
X X0

5 [Mu My, M13] X' Mi3 =2[Lsin€ + p(1 —cosB)]cosb # 0
X

or\ |’ 2[Lsin@ + p(1 — cosB )] sin 6
0 M3z = P

0
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Beam transport in the dogleg (Case 2)
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Beam transport in the dogleg (Case 2)

« The bunch is over-compressed in the dogleg; the divergence is big in the
deflection plane, resulting in big emittance and rapid growth of beam size
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Beam transport in the dogleg (Case 2)

Insertion of quadrupoles between dipoles

* Q1 and Q4: removing the dispersion and focusing the beam horizontally

« Q2 and Q3: focusing the beam vertically

Radiation

 Parameter | Value | Unit__ application
Angle 60 degree

Radius 0.4 m

Gap 50 mm

Translation 1.5 m

THz
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Beam transport in the dogleg (Case 2)

Optics of xxx facility

Optimized with TRANSPORT:
Method: _
Use beam matrix and transfer L Labeiae +
matrix + random search I
“R16
Constraint: S e - . Yrms

Q1=Q4,Q2=Q3 - \/\/ . Xrms

Translation=1.5m
T Zrms

Goal - T \-r'rr'r TTTT T
R16 = R26 = 0 (Achromatic) I
Matched beam size and emittance

at the dogleg exit - ] ]

http://aea.web.psi.ch/Urs Rohrer/MyWeb/trancomp.htm

Example of TRANSPORT output

DESY. X.-K. Li | 5 nC beam simulation for radiation application in the tunnel annex Page 25/32


http://aea.web.psi.ch/Urs_Rohrer/MyWeb/trancomp.htm

Beam transport in the dogleg (Case 2)

 The beam sizes and emittances are maintained after the dogleg
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Beam transport in the dogleg (Case 2)

» Longitudinal phase space before and after dogleg
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Beam transport in the dogleg (Case 2)

« Tuning the first and last quadrupole gradients simultaneously —léefoore do%l%%
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The shape is held up to Q;/Q, 0 = 1.02
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Beam transport in the dogleg (Case 2)

» The dispersion also results in a big emittance and a growth of beam size in the
horizontal (deflection) plane; meanwhile the bunch is over-compressed

« The emittance is x10 smaller than that for Case 1, thanks to smaller energy spread

» The dispersion can be removed by introducing a symmetric focusing optics

» The emittance is only 10-20 um, x5 smaller than Case 1

* The bunch length can be tuned by the quad gradient also in a small range

» The optimized quadrupole gradient needs an max. excitation current of ~ 19.5 A

» Derived from High1.Q5 calibration -> ~0.65 T/m/A
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Discussion

« With TRANSPORT, the gradients of the quadrupoles have been optimized

against the drift length between dipoles (or translation), the bending radius and

angle Not good solution
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Discussion

« Then prepare the radiation experiment right after the 2"9 dipole (or after two
quads with a short drift length); only two dipoles are necessary with the bunch
length controlled by the booster phase but with bad control transversely
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Summary

« Start-to-end simulations have been carried out in the context of radiation
application at PITZ with the specified heavy charge of 5 nC

« Attention was paid on the beam transport in the dogleg for two types of electron
bunches (positive and negative energy chirps)

» For a dispersive dogleg with just two dipoles, the bunch length can be well controlled by
tuning the booster phase thus the chirp, but with a poor beam quality in the deflection plane

« For an achromatic dogleg, the bunch length can be only tuned in a small range, but the beam
quality can be maintained in the deflection plane, especially when the energy spread is small

» For further simulations, more specifications on the beam quality and more space
for the dogleg would be helpful
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