Progress of a Superradiant THz FEL source at the PITZ facility

Natthawut Chaisueb,

PPS meeting, DESY, Zeuthen

Outline of the Talk

- **1 PITZ beamline**
- 2 Tunable THz source at PITZ
- 3 Angular flux density of undulator radiation
- **4** Benchmark of SPECTRA and theory
- 5 Bunch length VS bunch charge
- 6 Energy spread VS bunch charge

PITZ beamline

LCLS-I undulator

DESY. | Progress of a Superradiant THz FEL source at the PITZ facility | Natthawut Chaisueb, 12.08.2020

Tunable THz source at PITZ

Angular flux density of undulator radiation

The Poynting vector gives the energy flow per unit area per unit time.

$$S = \frac{1}{\mu_0} (E \times B) = \epsilon_0 c^2 (E \times B) = \epsilon_0 c E^2 n = \frac{d^2 W}{dAdt}$$

A solid angle = $d\Omega = \frac{dA}{R^2}$
Fourier transform $E(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} E(\omega) e^{-i\omega t} d\omega$
e spectral angular energy radiated by an electron during one

The spectral angular energy radiated by an electron during one passage through the undulator.

$$\frac{d^2 W}{d\Omega d\omega} = 2\varepsilon_0 c R^2 \left| E(\omega) \right|^2$$

R is the displacement from the radiated point to the observer

Angular flux density of undulator radiation (2)

The spectral angular energy

$$\frac{d^2 W}{d\Omega d\omega} = 2\varepsilon_0 c R^2 \left| E(\omega) \right|^2$$

- On axis undulator radiation:
 - θ =0 and Φ =0
 - Only odd harmonics: 1, 3, 5,...
 - Horizontal polarization
- Planar undulator has only a verticle magnetic field.
- Far field approximation: *R* >>> *r*, the observation angle is kept constant.

The spectral angular energy on-axis for a single electron

$$\left. \frac{d^2 W}{d\Omega \, d\omega} \right|_{\theta=0} = \frac{e^2 N^2 \gamma^2}{4\pi\epsilon_0 c} L\left(\frac{N\Delta\omega}{\omega_1}\right) F_n(K)$$

Angular flux density of undulator radiation (3)

It is related with the radiated power transferred from the fundamental harmonic to the higher harmonics.

The lineshape function

$$\left| \frac{N\Delta\omega}{\omega_1} \right| = \left[\frac{\sin\left(N_u \pi \Delta \omega / \omega_1\right)}{N_u \sin\left(\pi \Delta \omega / \omega_1\right)} \right]^2$$

- The interference of the radiated wave from the undulator magnet with N periods
- It is proportional to the spectral intensity.

characteristics of the lineshape function for the first harmonic.

Angular flux density of undulator radiation (4)

The spectral angular energy on-axis for a single electron

$$\frac{d^2 W}{d\Omega \, d\omega}\Big|_{\theta=0} = \frac{e^2 N^2 \gamma^2}{4\pi\epsilon_0 c} L\left(\frac{N\Delta\omega}{\omega_1}\right) F_n(K)$$

$$\frac{d^2 W}{d\Omega \, d\omega}\Big|_{\theta=0} \xrightarrow{\times \frac{N_e}{t}} \frac{d^2 P}{d\Omega \, d\omega}\Big|_{\theta=0} \xrightarrow{P = \hbar\omega\dot{N}} \frac{d^2\dot{N}}{d\Omega \, d\omega/\omega}\Big|_{\theta=0}$$

The angular flux density on-axis [photons/s/mrad²/0.1%BW]

$$\frac{d\dot{N}}{d\Omega}\bigg|_{\theta=0} = \frac{e^2 N^2 \gamma^2}{4\pi\epsilon_0 c} \frac{I_b}{e} \frac{2\pi}{h} L\left(\frac{N\Delta\omega}{\omega_1}\right) F_n(K) \frac{\Delta\omega}{\omega} -$$

DESY. | Progress of a Superradiant THz FEL source at the PITZ facility | Natthawut Chaisueb, 12.08.2020

SPECTRA program

- Optical properties of synchrotron radiation
- Various filters and convolution of detector's resolution
- Energy spread and finite emittance of the electron beam
- Rectangular, circular or doughnut-shaped apertures

[1] James A Clarke, The Science and Technology of Undulators and Wigglers Page 8

Benchmark of SPECTRA and theory

Angular flux density of first three harmonics

Pulse energy

Superradiant undulator radiation

The spectral angular energy on-axis for a single electron

$$\frac{d^2 W}{d\Omega \, d\omega}\Big|_{\theta=0} = \frac{e^2 N^2 \gamma^2}{4\pi\epsilon_0 c} L\left(\frac{N\Delta\omega}{\omega_1}\right) F_n(K)$$
Radiation energy of a single electron
$$W_{1e} = \frac{d^2 W}{d\Omega d\omega} \Delta\Omega\Delta\omega$$
Solid angle = $\Delta\Omega = \frac{2\pi}{\gamma^2} \frac{1 + K^2/2}{2nN_u}$
Fractional bandwidth = $\frac{\Delta\omega}{\omega} = \frac{1}{nN_u}$

Pulse energy of an electron bunch $W_{tot} = W_{1e}N_e \left[1 + \left(N_e - 1\right)f(\omega)\right]$

Longitudinal Gaussian form factor

$$f(\omega) = e^{-(\omega\sigma_z/c)^2} = e^{-(2\pi\sigma_z/\lambda_r)^2}$$

Peter Schmüser, Martin Dohlus, Jörg Rossbach, Ultraviolet and Soft X-Ray Free-Electron Lasers, Introduction to Physical Principles, Experimental Page 10

Benchmark of SPECTRA and theory

Pulse energy

SPECTRA result

Effects of emittance and energy spread

The effect due to the finite electronbeam emittance and energy spread is described as a beam envelope.

The beam envelope is taken into account by a two-dimensional electron distribution.

> Emittance = 5 mm.mrad Energy spread = 0.5%

The energy spread of the electron beam causes a broad bandwidth.

DESY. | Progress of a Superradiant THz FEL source at the PITZ facility | Natthawut Chaisueb, 12.08.2020

Electron Bunch Length

Pulse energy and form factor

Observed position = 0.6 m Bunch charge = 500 pC Emittance = 5 mm.mrad Correlated energy spread = 0.5% First harmonic

Scan parameters:

Beam energy = 3 – 22 MeV Bunch length = 10, 50, 100, 500, 1000 µm

The pulse energy and form factor drop at wavelength shorter than their bunch length.

An electron beam with shorter bunch length generates undulator radiation with a broader spectrum and higher pulse energy.

DESY. | Progress of a Superradiant THz FEL source at the PITZ facility | Natthawut Chaisueb, 12.08.2020

Bunch length VS bunch charge

First harmonic at 5 THz

Beam energy = 22 MeV (5 THz) First harmonic

Observed position = 0.6 m Emittance = 5 mm.mrad Correlated energy spread = 0.5%

Highest pulse energy = 18 mJPulse energy of 1 mJ: 30 - 60 fs1 - 4 nCPulse energy of 1 µJ: 30 - 110 fs30 - 4000 pC

Bunch length VS bunch charge

First harmonic at 1 THz

Beam energy = 10 MeV (1 THz) First harmonic

Observed position = 0.6 m Emittance = 5 mm.mrad Correlated energy spread = 0.5%

Scan parameters:

Bunch charge = 10 - 4000 pCBunch length = $30 - 5000 \text{ }\mu\text{m}$

Result

Pulse energy (μJ)

Highest pulse energy = 8 mJ Pulse energy of 1 mJ: 30 - 230 fs 1.3 - 4 nC Pulse energy of 1 µJ: 30 - 480 fs 50 - 4000 pC

Bunch length VS bunch charge

First harmonic at 0.1 THz

Beam energy = 3 MeV (0.1 THz) First harmonic

Observed position = 0.6 m Emittance = 5 mm.mrad Correlated energy spread = 0.5%

Scan parameters:

Bunch charge = 10 - 4000 pCBunch length = $30 - 5000 \text{ }\mu\text{m}$

Result

energy (μJ)

Pulse

Highest pulse energy = 800μ J Pulse energy of 1 mJ: -Pulse energy of 1 μ J: 30 - 4000 fs 100 - 4000 pC

Pulse energy of 10 µJ

First harmonic with possible frequencies

TECHNICAL NOTE: Terahertz Science at European XFEL, April 2018: minimum pulse energy of 10 µJ at all frequencies

First harmonic Beam energy = 3 - 22 MeV Frequency = 0.1 - 5 THz

Bunch length (fs) Result Possible longest bunch length and lowest bunch charge: 0.1 THz = 3300 fs, 400 pC 10^{2} 0.3 THz = 1200 fs, 230 pC 0.5 THz = 800 fs, 180 pC 0.7 THz = 600 fs, 150 pC 1 THz = 400 fs, 120 pC3 THz = 147 fs, 90 pC 10^{2} 10^{3} 10^{1} 5 THz = 95 fs, 90 pCBunch charge (pC)

DESY. | Progress of a Superradiant THz FEL source at the PITZ facility | Natthawut Chaisueb, 12.08.2020

0.3 THz

0.5 THz

0.7 THz

1 THz

3 THz

5 THz

Pulse energy of 10 μ J at 0.1 THz

Pulse energy of 10 µJ (2)

Third harmonic with possible frequencies

Third harmonic

Beam energy = 3 - 17 MeV Frequency = 0.3 - 9 THz

Result

Possible longest bunch length and lowest bunch charge: 0.3 THz = 1000 fs, 510 pC0.9 THz = 400 fs, 300 pC1.5 THz = 270 fs, 230 pC2.1 THz = 200 fs, 210 pC3 THz = 130 fs, 200 pC9 THz = 50 fs, 410 pC

DESY. | Progress of a Superradiant THz FEL source at the PITZ facility | Natthawut Chaisueb, 12.08.2020

Pulse energy of 10 µJ (3)

Fifth harmonic with possible frequencies

Pulse energy of 10 µJ (4)

First three harmonics with possible frequencies

First harmonic

Beam energy = 3 - 22 MeV Frequency = 0.1 - 5 THz Longest bunch length = 95 - 3300 fs Lowest bunch charge = 90 - 400 pC

Third harmonic

```
Beam energy = 3 - 17 MeV
Frequency = 0.3 - 9 THz
Longest bunch length = 50 - 1000 fs
Lowest bunch charge = 200 - 510 pC
```

Fifth harmonic

Beam energy = 3 - 10 MeV Frequency = 0.5 - 5 THz Longest bunch length = 80 - 600 fs Lowest bunch charge = 300 - 600 pC

 7×10^{7}

Band-pass filter

Band-pass filter

- For selecting specified frequencies in the THz range to get high spectral resolution.
- Relative bandwidth: 15 20%
- Peak transmission: 84 97%
- The filters are fabricated from thin metal foil with holes.
- Configuration of the holes depends on the required wavelength.

Band-pass filter of 10% = 2.85 – 3.15 THz for the central frequency of 3 THz.

3.1

wo ϵ and ΔE

with ϵ

with ΔE

First harmonic for bunch length of 90 fs with band-pass filter

First three harmonics for bunch length of 90 fs with band-pass filter 10%

First harmonics with band-pass filter 10% for various bunch lengths

Summary and outlook

Summary

- Superradiant undulator radiation including emittance and energy spread was performed.
- The radiation frequency of 0.1 5 THz with the pulse energy of 10 μ J can be achieved for electron beam energy of 3 22 MeV at the fundamental harmonic.
- The radiation frequency of 5 9 THz with the pulse energy of 10 μ J can be reached at third harmonic.
- Energy spread should not exceed than 1%.

Outlook

• Transverse properties of radiation include vacuum chamber of undulator magnet

Thank you