Development of "green" photocathode

Thesis status Updates

Sandeep Kumar Mohanty PPS 06.08.2020

KSbCs Photocathode

Sandeep Mohanty | PITZ Physics seminar | Thesis update

2

Factors affecting on Photocathode properties

- Plug material: Conductivity, avoid diffusion of film material (Mo, Si, Steel)
- Surface: Cleanliness and flatness (thermal emittance, unwanted contaminants especially oxides)
- Cathode material: Stoichiometry , crystal structure and orientation
- Enhancement material: special material like BN, graphene etc., also layer up on layer, excess Cs

KCsSb sequential growth analysis

Sb 10 nm = Thick

06-08-2020

PITZ DESY Luropean XFEL

K₃Sb Phase

Istituto Nazionale di Fisica Nuclea

Compare with BNL group data

Figure 1: Sequential K_3Sb growth; blue - Sb layer and red - K_3Sb layer.

ref :APL Materials 2, 121101 (2014); doi: 10.1063/1.4902544

European XFEL

- Improve in Q.E relate to better crystal quality which will reduce impurity scattering.
- Probable similar crystal structure occuers during growth like BNL.
- Sofar we get 0.3% @543 nm during K3Sb growth.
- But a detailed XPS or XRD study required.

Sandeep Mohanty | PITZ Physics seminar | Thesis update

KSbCs Phase

 High temperature gives better reaction rate and better crystallinity which leads to better Q.E.

Formula spicer model: Y (threshold) =A* [E- (Eg+Ea)^1.5] /[E- (Eg+Ea)^1.5]+B]

Compare with BNL group data

stituto Nazionale di Fisica Nuclear

Figure 5: Change of amplitude of (111) cubic K₃Sb (green), (002) hexagonal K₃Sb (black) and (200) cubic CsK₂Sb Bragg peak upon Cs deposition onto K₃Sb cubic/ hexagonal mixture. ref :APL Materials **2**, 121101 (2014); doi: 10.1063/1.4902544

- Cs can better react with cubic type of K3Sb structure.
- Reaction between Cubic type K3Sb with Cs will lead to a better Q.E of final cathode.

Sandeep Mohanty | PITZ Physics seminar | Thesis update

Thickness (nm)

European

Life time analysis

Laser power : 2 mw of 543nm Avg. Photocurrent : 23 micro amp Avg. Q.E: 2.8% @543 nm

Ratio,Q.E, Reflectivity

• 5.7% Q.E @514 nm is achived from cathode 7 with 17% yield @297 nm

Photon energy [eV]

hin Cathode		0		
Cathodes	Sb[nm]	K [nm]	Cs[nm]	Q.E.(%)@514nm
KCsSb-7 [90-120-110]	5	34	121	5.7
o KCsSb-6 [90-120-90]	5	32	117	5.2
KCsSb-4 [90-90-90]	5	41	106	4.2
Ratio	1 :	~(7-8) :	~23	

Thick Cathode								
	Cathodes	Sb[nm]	K [nm]	Cs[nm]	Q.E.(%)@514nm			
	KCsSb-5 [90-90-90]	10	75	316	5.2			
	KCsSb-3 [60-60-90]	10	66	313	5.2			
	Ratio	1	: ~7	: ~31				

Q.E is Independent of cathode thickness But thin cathode can give low surface roughness

06-08-2020

stituto Nazionale di Fisica Nuclear

11

Motivation: higher stability in higher temperature and high Q.E

- NaKSb(Cs)-1 is partial successful with Q.E 2% @514 nm
- Layer up on layer procedure was successful.
- NaKSb(Cs)-2 with Q.E 3.9% @514 nm

Outlook

- KCsSb photocathodes are reproducible with around 6% Q.E @514 nm and with 17 % Q.E threshold @ 297 nm.
- Further optimization is possible for KCsSb cathode.
- Layer- up on layer could be try on KCsSb photocathodes to improve Q.E.
- More optimization is needed for NaKSb(Cs).
- Develop an another kind of phtocathode i.e, Cs₃Sb Photocathode could be possible, since last part of NaKSb(Cs) cathode is similar.
- Prepare the new production chamber.
- Co-deposition procedure could be try.

New Cathode System

- The Green Cathode System parts acquisition is on going.
- The vacuum chamber has been fabricated, successfully leak check and Residual Gas Analyzer controlled.

- Major components already in house
 - Vacuum chamber
 - RGA
 - Vacuum probes and controller
 - Translators
 - Microbalance
 - Cathode heater and masking system
 - Bake out system (shared with Cs₂Te system) to be assembled
 - Some instrumentation can be shared with Cs₂Te system at the beginning and w have a stand-alone system

Thanks!

5-08-2020

Backup Slides

Cathode type	Cathode	Typical wavelength &	Quantum efficiency (electrons	Vacuum for 1000 h (Torr)	Gap energy+ electron affinity, Ec+Fa (eV)	Thermal emittance (microns/ mm(rms))	
		(nm), (eV)	per photon)		$\mathcal{L}_{\mathbf{G}} \cdot \mathcal{L}_{\mathbf{A}} (\mathbf{cv})$	Eq. (7)	Expt.
PEA: mono-alkali	Cs ₂ Te	211, 5.88 264, 4.70 262, 4.73	0.1	10 ⁻⁹	3.5 [42] "	1.2 0.9 0.9	0.5 ± 0.1 [35] 0.7 ± 0.1 [35] 1.2 ± 0.1 [43]
	Cs ₃ Sb	432, 2.87	0.15	?	1.6+0.45 [42]	0.7	?
	K₃Sb	400, 3.10	0.07	?	1.1+1.6 [42]	0.5	?
	Na ₃ Sb	330, 3.76	0.02	?	1.1+2.44 [42]	0.4	?
	Li ₃ Sb	295, 4.20	0.0001	?	?	?	?
PEA:	Na ₂ KSb	330, 3.76	0.1	10^{-10}	1+1 [42]	1.1	?
multi-alkali	(Cs)Na ₃ KSb	390, 3.18	0.2	10^{-10}	1+0.55 [42]	1.5	?
	K ₂ CsSb	543, 2.28	0.1	10 ⁻¹⁰	1+1.1 [42]	0.4	?
	$K_2CsSb(O)$	543, 2.28	0.1	10 ⁻¹⁰	1+ < 1.1[42]	~ 0.4	?
NEA	GaAs(Cs,F)	532, 2.33	0.1	?	$1.4 \pm 0.1[42]$	0.8	$0.44 \pm 0.01[44]$
		860, 1.44	0.1	?		0.2	$0.22 \pm 0.01[44]$
	GaN(Cs)	260, 4.77	0.1	?	1.96+?[44]	1.35	$1.35 \pm 0.1[45]$
	GaAs $(1-x)$ Px $x \sim 0.45$ (Cs,F)	532, 2.33	0.1	?	1.96+?[44]	0.49	$0.44 \pm 0.1[44]$
S-1	Ag-O-Cs	900, 1.38	0.01	?	0.7[42]	0.7	?

D.H. Dowell et al. / Nuclear Instruments and Methods in Physics Research A 622 (2010) 685–697

