Progress Report on Design of the THz Diagnostics for PITZ SASE FEL

Prach Boonpornprasert PITZ Physics Seminar 3.7.2020

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Outline

- Layout of the Tunnel Annex
- Gaussian Beam Propagation
- Properties of PITZ SASE FEL from WARP Simulation
- Optical Layout of the FEL Diagnostics system
- Gaussian Beam Propagation of the FEL
- Summary and Outlook

Layout of the Tunnel Annex

DESY

Layout of the Tunnel Annex

DESY. Progress Report on Design of the THz Diagnostics for PITZ SASE FEL | Prach Boonpornprasert | PPS 3.7.2020

Gaussian Beam Propagation

Introduction to properties of a simple Gaussian beam mode

- Optics in different regimes
 - Optical regime ($\lambda \ll d$) \rightarrow geometrical optics ($\lambda/d = 0$)
 - Terahertz regime ($\lambda < d$) \rightarrow Gaussian beam optics
 - Microwave regime $(\lambda \sim d) \rightarrow$ Physical optics
- Diffraction effects are neglected in geometrical optics
- Physical optics techniques are very accurate but can be computationally slow for multi-element systems.
- This study uses Gaussian beam optics.
- Gaussian beam modes are solutions of the paraxial Helmholtz equation (intensity doesn't change with propagation).
- Helmholtz equation $\nabla^2 E + k^2 E = 0$; $E(x, y, z) = u(x, y, z)e^{-ikz}$
- Paraxial equation $\Rightarrow \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{2ik\partial^2 u}{\partial z} = 0$
- Solution $\rightarrow u(x, y, z) = \frac{u_0}{(q_0 + z)} e^{-i\frac{k(x^2 + y^2)}{2(q_0 + z)}}$; $u_0, q_0 = \text{constant}$

$$E_G(x, y, z) = \sqrt{\frac{2}{\pi W^2(z)}} e^{-\frac{(x^2 + y^2)}{W^2(z)} - ik\left(z + \frac{(x^2 + y^2)}{2R(z)}\right) + i\phi_0(z)}$$

- By setting $z_0 = \pi W_0^2 / \lambda$,
 - Beam width: $W^2(z) = W_0^2(1 + (z/z_0)^2)$
 - Phase radius of curvature: $R(z) = z + z_0^2/z$
 - Phase-slippage: $\phi_0(z) = \tan^{-1}(z/z_0)$

The power flux (power per unit area):

$$I = \langle \mathbf{E} \times \mathbf{H}^* \rangle = \frac{|E|^2}{2\mu_0 c} = \frac{c\epsilon_0 |E|^2}{2}$$

Gaussian Beam Propagation

Transfer Matrices formalism (ABCD Matrices)

• In geometrical optics, transformation of the input ray to the output ray through a transfer matrix can be expressed as:

$$\begin{bmatrix} r_{out} \\ \theta_{out} \end{bmatrix} = \mathbf{M} \cdot \begin{bmatrix} r_{in} \\ \theta_{in} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} r_{in} \\ \theta_{in} \end{bmatrix} = \begin{bmatrix} Ar_{in} + B\theta_{in} \\ Cr_{in} + D\theta_{in} \end{bmatrix}$$

- Example of ABCD matrices
 - Drift space:
 - Thin lens:
- $\begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix}$

• In Gaussian beam optics, by treating it as a complex beam parameter q(z),

$$\frac{1}{q(z)} = \frac{1}{R(z)} - i \frac{\lambda}{\pi W^2(z)},$$

the transformation using the ABCD matrix are

•
$$\frac{1}{q_{out}} = \frac{C + D\left(\frac{1}{q_{in}}\right)}{A + B\left(\frac{1}{q_{in}}\right)}$$

•
$$R_{out} = \left(Re\left[\frac{C+D/q_{in}}{A+B/q_{in}}\right]\right)^{-1}$$

•
$$W_{out} = \sqrt{\frac{-\lambda}{\pi} \left(Im \left[\frac{C + D/q_{in}}{A + B/q_{in}} \right] \right)^{-1}}$$

• $\phi_{0,out} = \phi_{0,in} - \operatorname{Arg}[A + B(1/q_{in})]$

Properties of PITZ SASE FEL from WARP Simulation

Preliminary simulations including waveguide boundary conditions (performed by X.-K. Li)

Page 7

DESY

Properties of PITZ SASE FEL from WARP Simulation

Intensity [MW/cm²]

20

6

Calculation of Gaussian beam parameters

-2

• The second moment method is used for the calculation

$$\sigma_{u} = \sqrt{\frac{\int_{-\infty}^{\infty} (u - u_{0})^{2} I(x, y) dx \, dy}{\int_{-\infty}^{\infty} I(x, y) dx \, dy}} \quad ; u = x, y$$

- Calculated parameters
 - $\sigma_x = 3.072 \text{ mm}, W_{x0} = 2\sigma_x = 6.144 \text{ mm}$
 - $\sigma_y = 0.996 \text{ mm}, W_{y0} = 2\sigma_x = 1.992 \text{ mm}$
- Assumed parameters
 - $z_{waist} = z_{undulator \ exit} = 0$
 - $\lambda = 100 \, \mu m$

Ω

x [mm]

2

4

-2

-4

Optical Layout of the THz FEL Diagnostics system (Top view)

A preliminary layout for the design optimization

There are 4 transport lines: MS21toDT1, MS31toDT1, MS21toDT2 and MS31toDT2

DESY

Optical Layout of the THz FEL Diagnostics system

Components	HIGH3.SCR2 MS21 to D1	HIGH3.SCR3 MS31 to D1	Components	HIGH3.SCR2 MS21 to D2	HIGH3.SCR3 MS21 to D2
Uexit	0	0	Uexit	0	0
MS21	600		MS21	600	
MS22	867		MS22	867	
MS31		2200	MS31		2200
MS32		2467	MS32		2467
MT1	995		MT1	995	
MT2	2353		MT2	2353	
MT3		2595	MT3		2595
MT4		2782	MT4		2782
MT5	2518	2947	MT5	2518	2947
MT7	2921	3295	MT6	2725	3099
DT1	3002	3376	Beam splitter	2823	3197
			DT2	2942	3316

Positions [mm]

Gaussian Beam Propagation of the FEL

Horizontal axis (x-axis)

- Calculate the beam propagation with flat mirrors and thin lenses.
- $W_{x0} = 2\sigma_x = 6.144 \text{ mm}$
- $z_{waist} = z_{undulator \ exit} = 0$
- $\lambda = 100 \ \mu m$
- Optimized focal length of each component

Components	f (m)
MS21	0
MS22	0
MS31	0.7
MS32	1.5
MT1	0.42
MT2	0.2
MT3	0
MT4	0
MT5	0
MT6	0.13
MT7	0.06

Gaussian Beam Propagation of the FEL

Vertical axis (y-axis)

- Calculate the beam propagation with flat mirrors and thin lenses.
- $W_{y0} = 2\sigma_y = 1.992 \text{ mm}$
- $z_{waist} = z_{undulator \ exit} = 0$
- $\lambda = 100 \ \mu m$
- Optimized focal length of each component

Components	f (m)
MS21	0
MS22	0
MS31	0.7
MS32	1.5
MT1	0.42
MT2	0.2
MT3	0
MT4	0
MT5	0
MT6	0.13
MT7	0.06

Summary and Outlook

Summary

- Layout of the THz diagnostics system for the PTZ SASE FEL is presented.
- Calculations of FEL beam propagation for the THz diagnostics system of the PTZ SASE FEL have been performed.
- For the case of HIGH3.Scr3, the FEL beam size is larger than the beam pipe before it reaches the coupler mirror.

Outlook

- Change coordinates of the electron beamline?
- Continue the studies with the Gaussian propagation method
 - Thin lens → Toroidal mirror or parabolic mirror
 - Including phase and wave front into the studies
- Verify the studies results with EMW simulation codes → SRW(ESRF) → ZEMAX
- Finalize the hardware design
 - Screen stations: HIGH3.Scr2 and HIGH3.Scr3
 - Optical table
 - Components: optics, THz detectors and motorized stages
 - Cables pulling
 - Control GUI, measurement scripts

