Updates on THz Generation Experiments at PITZ

Prach Boonpornprasert

PITZ Physics Seminar DESY Zeuthen 18.03.2020

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Outline

- Review of the THz stations
 - The screen station PST.Scr2
 - THz diagnostics system
- Recent experiments
- Upgrade of the THz diagnostics system

THz Station: PST.Scr2

DESY

THz Station: PST.Scr2

Acceptance angle

THz window

- Company: Torr Scientific Ltd, UK
- Model: BVPZ64NQZ
- Material: Quartz Natural Z-Cut Zero Length
- Flange type: NW63CF
- Optical thickness: 4.5 mm

Setup for spectral distribution measurement (Michelson interferometer)

Setup for total pulse energy measurement

Setup for spectral distribution measurement (Michelson interferometer)

DESY

THz detector

- Company: SLT, Wildau
- Model: THz20
- Type: Pyroelectric detector

THz beam splitter

- Company: Tydex, Russia
- Model: BS-HRFZ-Si-D50.8-T3.5
- Material: High Resistivity Float Zone Silicon (HRFZ-Si)

Fig. 1. Transmission and reflection of HRFZ-Si 5.0 mm-thick sample in THz range.

DESY

THz detector: conversion from output voltage to energy

<i>F_{calib}</i> = calibration factor from company G = amplification conversion factor (gain)	= 58.4 V/W $= 10^8 V/A$	1
G _{VPA} = gain of voltage preamplifier	= 1000	
C _{det} = detector capacity	= 3.34 nF	
C _{cab} = cable capacity	= 100 pF	
S _{current} = current sensitivity		
Svoltage = voltage sensitivity		
$V_{measured}$ = measured voltage from the scope		
Emeasured = measured enegy per pulse		
NoP = number of pulses		
$S_{current} = \frac{F_{calib}}{G} = \frac{58.4 V/W}{10^8 V/A} = 0.584 \mu A/W$		

 $S_{current} = \frac{1}{G} = \frac{10^8 V/A}{10^8 V/A} = 0.384 \,\mu A/W$ $S_{voltage} = \frac{S_{current}}{C_{det} + C_{cab}} = \frac{0.584 \,\mu A/W}{3.44 \,nF} = 170 \,V/J$ $E_{measured} = \left(\frac{V_{measured}}{S_{voltage}}\right) * \left(\frac{1}{NoP}\right) * \left(\frac{1}{G_{VPA}}\right)$

Example: NoP = 20 pulses,
$$V_{measured} = 1 \text{ mV}$$

 $\Rightarrow E_{measured} = \left(\frac{1 \text{ mV}}{170 \text{ V/J}}\right) * \left(\frac{1}{20}\right) * \left(\frac{1}{1000}\right) = 0.294 \text{ nJ}$

Recent Experiments

Measurements of (C)TR generated by a modulated beam (March 2020)

Highlight results were presented by G. Georgiev in PPS 05.03.2020 (rehearsal for DPG 2020)

- Laser: Modulation using Lyot filters, BSA = 2.5 mm
- Beam: $Q_{bunch} = 500 \text{ pC}$ and 1 nC
- $P_{z,gun} \sim 6.7 \text{ MeV/c}, P_{z,booster} \sim 20.7 \text{ MeV/c}$

Case	Peak [a.u.]	Peak w/o bkg	Freq. [THz]
500 pC @ Imin	0,627	0,593	0,356
500 pC @ Imin-20A + quads	1,18	1,15	0,356
1 nC @ Imin	0,546	0,511	0,324
1 nC @ Imin-20A + quads	0,809	0,781	0,326

DESY. Updates on THz Generation Experiments at PITZ | Prach Boonpornprasert | PITZ Physics Seminar | DESY Zeuthen | 19.03.2020

Recent Experiments

Difficulties

- Optical alignments
 → Upgrade the diagnostics system
- Slow signal fluctuations from the pyroelectric detector were observed. A possible cause is some components were heated. → To be investigated by a thermometer.

Upgrade of the THz Diagnostics System

- Consider of using THz band-pass filters.
- Equip with more remote control motorized stages \rightarrow design is ongoing (H. Shaker).

Summary and Outlook

- Details of the CTR/CDR station are reviewed.
- Highlight experimental results were already presented by G. Georgiev in PPS 05.03.2020.
- Upgrade of the THz diagnostics system is ongoing.

To be done

- CTR measurements using a THz camera
- CTR/CDR polarization measurements
- Investigation of signal fluctuation from the detector
- Test of THz window
- Detailed calculations of THz radiation transport

• ...

