Atomic spatiotemporal imaging with MeV bright electron beams

Renkai Li Tsinghua University

2019/09/05

Acknowledgement

- Helpful discussions with many colleagues and friends in the electron source / accelerator / ultrafast science communities (Pietro Musumeci, Daniele Filippetto, Jared Maxson, and many others)
- R&D on UED key technologies at Tsinghua and UCLA
- UED facility and sciences work at SLAC (PI: Xijie Wang, Team, Collaborators, SLAC AD, TID, and LCLS)
- Many collaborators and users around the world

- Introduction
- State-of-the-art MeV UED instruments
- Recent scientific outcomes
- Toward better performances
- Summary and outlook

<u>Ultrasmall:</u>

short wavelength

<u>Ultrafast:</u>

short pulse duration

electrons phonons pins

X-ray Probe

XFEL and UES are complementary tools towards a complete picture of dynamics

Electron Probe

G. Mourou and S. Williamson, APL 41, 44 (1982)S. Williamson, G. Mourou and J. C. M. Li, PRL 52, 2364 (1984)

Science outcome: See e.g. M. Chergui and A. H. Zewail, *ChemPhysChem* **10**, 28 (2009); R. J D. Miller, *Science.* **343**, 1108 (2014) and etc. ⁵

State-of-the-art keV UEDs

- Compact DC gun or w/ rf compression ٠
- *Up to 10⁶ e- per pulse, 100-200 fs* ٠ fwhm pulse duration
- Flexible rep-rate (usually kHz to allow ٠ samples to relax)
- Study solid state (thin nanofilm) • samples

T. van Oudheusden et al., PRL 105, 264801 (2010)

Comparison between keV and MeV

- Tremendous advances with keV UEDs in the past decades
- Significant Benefits with MeV e-

- X. J. Wang, Z. Wu, H. Ihee, PAC'03, 420-422 (2003).
- P. Musumeci and R. K. Li, ICFA BD Newsletter No. 59 (2012).

MeV UEDs with rf guns/boosters

More source options for UED

		<i>t al.,</i> (2015) <i>fs laser-rf timing, ultra-stable HV</i> <i>modulator, Ti:Sa laser, etc.</i>		
	S. Weathersby et al., RSI 86 , 073702 (2015)		Parameters	Values
			rep. rate	SS - 180 Hz
		beam energy	2 - 4 MeV	
			bunch charge	10 ⁴ -10 ⁶
			emittance	2 - 20 nm
and the second	LCLS-type sample RF gun chamber	detectors	bunch length	<50 fs rms

Reciprocal superlattice $q1 = 0.6 \text{ Å}^{-1}$

Typical beam parameters

11

Photocathode rf gun

- High brightness
- Enabled XFEL, inverse Compton scattering, etc.
- Extremely flexible 1-10⁹ e-/pulse

Reliable

Science outcome from the SLAC UED machine

Science 360, 1451 (2018)

Science 361, 64 (2018)

30-40 experiments / yr

Solid state: nano-scale,

Liquid-phase

Solid state systems

- Nano-scale materials (Bi, FePt, nanoporous Au, **Cr-Cu heterostructures**)
- 2D materials (MoS₂, MoSe₂, Pbl₂)
- Diffuse scattering (Au, Ni)
- Strongly correlated system (Bi2212, TaS₂, LSMO)
- Charge density wave (TaS₂, WTe₂) \checkmark
- Functional material (Perovskite, VO₂, high entropy alloys)
- ✓ Warm dense matter (radiation-damaged W, Au)

Diffuse scattering from single-crystal Au

T. Chase et al., APL 108, 041909 (2016)

TaS₂, L. Le Guyader et al.

Ultrafast structural deformations in monolayer MoS₂

- Large-amplitude in-plane displacements and ultrafast wrinkling of the monolayer
- Time-scale ~1 ps (direct measurements of e-ph coupling time-scales)
- Long-time recovery consistent with interfacial thermal coupling into underlying substrate

Hybrid perovskites: future of solar cell?

First direct measurements of hot carrier-lattice coupling in the hybrid perovskites

Atomic movies of light-excited perovskite

-Large amplitude lattice displacements observed under weak excitation conditions (~5 K T-jump) – consistent with soft, deformable structure of the hybrid perovskites

-Differential pair correlation analysis shows that not all the bond lengths are changing. Dominant response is in the iodine octahedra while preserving the Pb-I distance. Indicative of a rotational sub-lattice disordering. First evidence for dynamical response in the inorganic sub-lattice.

-Dominant contribution from iodines consistent with their role in larger length-scale ionic transport / degradation of PV devices.

X. Wu et al. Sci. Adv. 3 e1602388 (2017)

Heterogeneous to homogeneous melting transition visualized with UED

M. Z. Mo et al., Science 360, 1451 (2018)

Measured energy density dependence of ultrafastlaser-induced melting mechanisms in Au.

Scientific significance:

- enabled direct comparison with MD simulations and revealed the sensitivity to nucleation seeds for melting.
- Provide critical information to test and improve the kinetic theories of melting.
- Help advance the material processing related to solid-liquid phase transition to atomic level precision.

Gas-Phase MeV UED (Year 2015)

• First gas-phase UED with 100-fs temporal resolution

J. Yang et al., PRL 117, 153002 (2016)

J. Yang et al., Nature Commun. 7, 11232 (2016)

Conical intersection and photodissociation dynamics

Ring-opening reaction of CHD

- Same reaction has been measured by LCLS
- LCLS has better temporal resolution
- UED has better spatial resolution
- Much shorter wavelength of electrons (signal at large q) allows 'direct' interpretation of the structure
- Extremely valuable dataset to benchmark simulation codes
- 1,3-cyclohexadiene (CHD) to 1,3,5-hexatriene (HT)

T. J. A. Wolf et al., Nature Chemistry 11, 504 (2019).

https://www6.slac.stanford.edu/ne ws/2019-04-15-slacs-high-speedelectron-camera-films-molecularmovie-hd.aspx

THz pump – electron probe

THz scheme	Frequency range	Field strength/Fluence	
Optical rectification in LiNbO ₃ using titled pulse front technique	 0.8 THz Peak frequency single cycle pulse 	 >10 uJ/pulse (~300 kV/cm) 	
Rectification in an Organic Crystal	 2 THz Peak frequency single cycle pulse 	 >5 uJ/pulse (~600 KV/cm) 	
Difference frequency generation OPA	 Tunable 17-30 THz 50 fs duration 	 >10 uJ/pulse (25 mJ/cm^2) 	

THz induced, time-dependent kick of MeV electrons

Courtesy of E. Mannebach

ultrafast symmetry switch in a Weyl semimetal

23

330 350

t = 70 ps

Liquid phase samples

- Many chemical and biological processes happen in liquid/solution phase
- Liquid sheets jet developed at LCLS (100s nm thick, 100s um wide) suits well UED
- First round experiment April-June 2019

J. Koralek et a., Nat. Commun. 9, 1353 (2018)

- Introduction
- State-of-the-art MeV UED based on an rf gun
- Recent scientific outcomes
- Toward better performances (spatial, temporal)
- Summary and outlook

Toward better probe size and q-resolution

Better temporal resolution

- Currently best UED temporal resolution ~100 fs fwhm (~50 fs rms)
- ~10 fs level temporal resolution will open up many new opportunities
- Taking advantage of the full optical control to minimize time-of-flight jitter

Gerber et al., Science 357, 71 (2017)

APL 108, 041909 (2016) PRB 97, 165416 (2018)

THz stamping to sub-fs accuracy

THz compression and jitter suppression

Improved temporal resolution with THz

- Most hardware in place
- Adding an rf buncher for much higher bunch charge
- Work with material science, chemistry, biology, quantum materials groups on campus and worldwide

- MeV UED is a unique and versatile research tool
 - Complementary to XFEL, ARPES, optical spectroscopy, etc.
- Powerful, reliable, cost-effective
 - 24/7 operation, mid-scale and requires good lab environment
- Intensive R&D toward better spatial (q-) and temporal resolution
- Laser-generated THz can further improve performances

Thank you for your attention!

Single-shot ps MeV UEM

MeV UEM: 10³ times improved spatio-temporal resolution

R. K. Li and P. Musumeci, PRApplied 2, 024003 (2014)

- Improved source: higher launch field, higher brightness
- lower beam emittance
- rf amplitude and phase control (at 1×10⁻⁴ and 0.01 degree level)
- Low energy spread: longi. phase space linearization
- strong electron lens
- numerical studies of aberrations and e-e interactions