Transport of the space charge dominated electron beam through the LCLS-I undulator at PITZ

Progress Report

Pitchayapak Kitisri DESY Zeuthen, 08.08.2019

Outline

- Introduction
 - The LCLS-I undulator & field
 - Motivation & goals
- Single particle simulations
 - Methodology & simulation setup (ASTRA code)
 - Results
- Electron beam simulations (w/o space charge)
 - Methodology & simulation setup (ASTRA code)
 - Results
- Summary & Outlook

The LCLS-I undulator

Properties of the LCLS-I undulator

Properties	Details
Туре	fixed gap planar hybrid (NdFeB)
Nominal gap	6.8 mm
K-value	3.49
Support diameter / length	30 cm / 3.4 m
Vacuum chamber size	11 mm x 5 mm
Period length	30 mm
Poles / a module	226 poles (= 113 periods, 3.4 m)
Total weight w/o vac. chamber	1000 kg

Figure of the LCLS-I undulator

Reference: LCLS conceptual design report, SLAC-0593, 2002.

B_y(T)

Magnetic filed of the LCLS-I undulator

DESY. |Simulations of beam transport through the LCLS-I undulator at PITZ | Pitchayapak Kitisri, 08.08.2019

ByT

Motivation & goals

Optimize input beam which have least beam lost when traveling through the undulator.

x _{rms}	horizontal rms beam size
<i>Y</i> rms	vertical rms beam size
cor_px	horizontal correlated divergence of bunch
cor_py	vertical correlated divergence of bunch

Goals

- > Determine function of $cor_px(x_{rms})$ and $cor_py(y_{rms})$ which deliver the minimum Goal Function (GF)*.
- > Determine function of $x'_0(x_0)$ and $y'_0(y_0)$ which deliver the minimum GF.

Tracking electron beam takes long simulation time. \rightarrow Track single electron first.

ASTRA input file

📕 UBубб7.in - Notepad

File Edit Format View Help &NEWRUN Head='LCLS-I undulator transport' RUN=1 Distribution = 'beamLP.ini', TRACK ALL=.T, TRACK ON AXIS=.F CHECK REF PART=.F Auto phase=T Zoff=0 H max=0.0003, H min=0.00 Xrms=1.5 cor px=-0.753 Yrms=0.7 cor py=-11 &OUTPUT ZSTART=0.0, ZSTOP=3.75 Zemit=4000, Zphase=5 RefS=T

 x'_0 :horizontal trajectory angle y'_0 : vertical trajectory angle

*The GF represents the area under the electron trajectory.

DESY. |Simulations of beam transport through the LCLS-I undulator at PITZ | Pitchayapak Kitisri, 08.08.2019

 \geq

 $x_0 = 0 \text{ mm}$ $y_0 = 0 \text{ to } 2.4 \text{ mm} (0.1 \text{ mm step size})$ $x'_0 = 0 \text{ mrad}$ $y'_0 = -11.2 \text{ to } 0.3 \text{ mrad} (0.1 \text{ mrad step size})$

Then track the electron from z = 0 to z = 3.4 m

 x'_0 :horizontal trajectory angle y'_0 : vertical trajectory angle

DESY. |Simulations of beam transport through the LCLS-I undulator at PITZ | Pitchayapak Kitisri, 08.08.2019

Page 6

Determine function of $x'_0(x_0)$ and $y'_0(y_0)$ which

 $GF = \int \frac{|x(z)|dz}{w} + \int \frac{|y(z)|dz}{h}$

deliver the minimum GF.

Single particle simulations

Results

Scan on x-axis

Single particle simulations Results

Scan on y-axis

R² = 0.9947

Chamber

5.5 mm

E

S

5 mm

Ш

4

DESY. |Simulations of beam transport through the LCLS-I undulator at PITZ | Pitchayapak Kitisri, 08.08.2019

Electron beam simulations

Methodology & Simulation setup (ASTRA code)

beam with pz = 17.14 MeV/c

 $y'_{0}[mrad] = -8.9y_{0}[mm] + 0.2$ cor pv

1st step

cor px

 $x_{\rm rms}$ = 0.5 to 2.5 mm (0.1 mm step size) $y_{\rm rms} = 0.5 \,\rm mm$ *cor* px = -2.1 to 0.4 mrad (0.1 mrad step size) cor py = 0 mrad

 $\begin{array}{c} x'_0[mrad] = -0.4x_0[mm] + 0.2 \\ \downarrow \\ cor_px \\ \end{array}$

 $x_{\rm rms} = 1.5 \, {\rm mm}$ $y_{\rm rms}$ = 0.1 to 1.2 mm (0.1 mm step size) $cor_px = -0.753 \text{ mrad} (cor_px(x_{rms}) 1^{st})$ cor py = -11 to 0 mrad (0.1 mrad step size) cor_ $py = cor_py(y_{rms}) 2^{nd}$

3rd step

 $x_{\rm rms} = 0.1$ to 2.5 mm (0.1 mm step size) $y_{\rm rms}$ = 0.1 to 1.2 mm (0.1 mm step size) $cor_px = cor_px(x_{rms}) 1^{st}$

Then track the electron beam from z = 0 to z = 3.4 m (w/o space charge)

2nd step

Goals

- Determine function of $cor_px(x_{rms})$ and $cor_py(y_{rms})$. \geq
- Minimum Goal Function (GF). \geq

$$GF = \int \frac{x_{rms}(z)dz}{w \cdot L} + \int \frac{y_{rms}(z)dz}{h \cdot L}$$

Without space charge

1st step

 $cor_px[mrad] = -0.59x_{rms-0}[mm] + 0.13$ R² = 0.88

Without space charge

2nd step

from 1st **step:** x_{rms} = 1.5 mm *cor_px* = -0.753

R² = 0.94

Without space charge

3rd step

from 1st step:

 $cor_px[mrad] = -0.59x_{rms-0}[mm] + 0.13_{1.2}$

from 2nd step:

```
cor_py[mrad] = -8.58y_{rms-0}[mm] + 0.60
```

Small rms beam size → small GF

Simulations with space charge may get a different conclusion!

Without space charge

beam with pz = 17.14 MeV/c

Summary

Single particle simulations

- x'_0 as a function of x_0 which delivers the minimum GF is $x'_0[mrad] = -0.4x_0[mm] + 0.2$
- y'_0 as a function of y_0 which delivers the minimum GF is $y'_0[mrad] = -8.9y_0[mm] + 0.2$

Electron beam simulations

- cor_px as a function of x_{rms-0} which delivers the minimum GF is $cor_px[mrad] = -0.59x_{rms-0}[mm] + 0.13$
- cor_py as a function of y_{rms-0} which delivers the minimum GF is

$$cor_py[mrad] = -8.58y_{rms-0}[mm] + 0.60$$

Outlook

- Perform electron beam simulations with space charge.
- Determine the tolerants of x_{rms-0} , y_{rms-0} , cor_px and cor_py

Thank you

Without space charge

beam with pz = 17.14 MeV/c

Outlook

- Simulation electron beam with space charge.
- Optimize parameters number of harmonics and number of magnetic field period. Then follow the steps of single particle simulations and electron beam simulations.
- Fine the tolerant of xrms0 and y rms0

Magnetic filed of the LCLS-I undulator

of harmonics = 17
of undulator field period = 116

Single particle simulations

Methodology & Simulation setup

Rough scan

Goals

- Find cases that ref.electron can survive in the LCLS-I undulator.
- Maximum initial transverse area.
- Minimum Goal Function (GF).

$$GF = \int \frac{|x(z)|dz}{w} + \int \frac{|y(z)|dz}{h}$$

 $x_0 = 0$ to 5 mm $x_0' = -3$ to 2 mrad $y_0 = 0$ to 2 mm $y_0' = -11$ to 11 mrad(0.5 mm step size)(1 mrad step size)

DESY. |Simulations of beam transport through the LCLS-I undulator at PITZ | Pitchayapak Kitisri, 08.08.2019

