Sinsunthithet Nontaphat:

PIT Z Photo Injector Test Facility

- Software Skills:
 - Unity, C++, Python, Matlab
- Science Skills:
 - Feels free in Physics Theory and High Energy Physics
- Comment from student:

"... I am interested in free electron laser because this are used to observe the movements of atoms and molecules and I also interested in accelerator physics..."

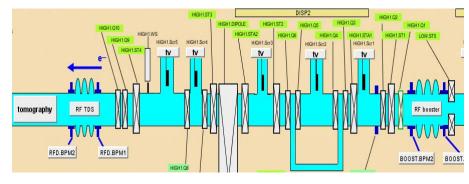
Hannah Norman

- Skills Gained:
 - Experience with analysing and interpreting MRI scans in a medical physics facility.
 - Condent programming abilities (C++, Python). Competent use of ROOT, Mathematica, UNIX and Git.
 - Used BDSIM for particle beam simulations and to run diagnostics on a beam. Produced code in Python to produce shielding for the beamline, visualised in Geant4. Used a computer program to interpret slices of an MRI scan with tools for enlarging and highlighting possible metastases.
- Comment from student:
 - "... I have a keen interest in particle physics and the research that takes place at DESY: specifically accelerator physics... Though my aspired career is in particle therapy, I have an interest in accelerator physics and beam simulating and am open to any projects within these areas..."

PITZ-related tasks for summer students 2019

Task	Tools to be used	Expected results	Contact person (PITZ)	Priority
Simulation of MeV electron diffraction process through a metal thin film (Al, Gold,)	ASTRA, Matlab	Report on simulations	Houjun	
UED detector characterization and optimization	Matlab,	efficiency characterization of current detector, optimization setup of future UED detector	Houjun	
Coupling between quads and steerers	CST, Matlab		Raffael	
LEDA scan fit for MMMG, other OMA improvements (e.g. NoP/gain adjustments)	ASTRA, Matlab	OMA modifications	Mikhail	
Routine measurements of the Li vapor density:measure Li plasma vapor density vs temperatureMake code for spectrum analysis		Measurements comparison Code for analysis	Osip (Gregor, Matthias)	
Analyze scattering signal transport through downstream quadrupoles	Geant4, matlab / python	Simulation results	Houjun	at
Modeling of the slit-scan procedure for Tranverse Ph.Sp. measurements	matlab	Working script	Georgi Sinsunt	nither
			Sins	

Possible ways to improve SNR for future PITZ emittance measurement


- Another way to measure PITZ emittance
 - Insert a pepper pot mask at EMSY station (remove space charge effect)
 - Use quadrupole scan to measure both projected and slice emittance (improved SNR)

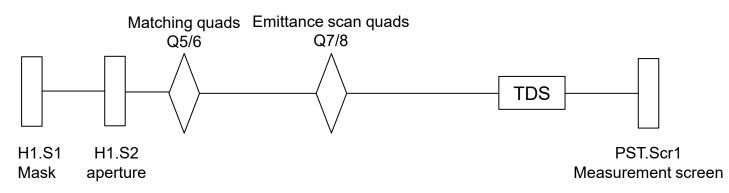
Compared to low charge beamlet during slit scan, the charge is much higher

Example from UCLA:

- laser-drilled pepper pot
- circular holes of 15 µm diameter
- 85 µm spacing
- ~3% transmission.

Pros:

- 1) both issues of space charge & SNR are improved.
- In principle only single to few pulses are needed with efficient imaging system (good for facilities without long pulse linac or high energy (>~50 MeV) linac).


Cons:

- 1) Needs good uniformity of holes
- 2) <u>Scattering signal may be focused again by</u> <u>quadrupoles</u>
 - intensity of scattering signal
 - <u>emittance of scattering (scattering</u> <u>angle)</u>
 - beam aperture between mask and quadrupole
- 3) Need good calibration of quadrupole mode

Analyze scattering signal transport through downstream quadrupoles

- Step1: Use geant4 to analyze the mask scattering signal intensity, energy spectra, angle spectra
- Step2: Use quadrupole transfer matrix to compare the scattering signal & main beam signal on a downstream screen
- Step3: Add an aperture in between mask and quadrupole, repeat step2
- > Step4: Optimize the aperture size for best signal to noise ratio
- Step5: Vary mask thickness, repeat step1 to step 4

Skills required: Geant4, matlab/python, basic knowledge of beam transfer matrix, data analysis

Modeling of the slit-scan procedure for Transverse Ph.Sp. measurements

- Generate 6D phase space of ebeam assuming possible correlations
- Simulation of ph.sp. measurement procedure: singleslit scan technique
- Desired output full imitation of fastscan output files
 - Musthaves
 - EMSY
 - MOI
 - X-, Y-scan
- > Check with tools (emcalc, VPP)

- Supervisors: G. Georgiev (M. Krasilnikov)
- > Tools: Matlab, Python
- Expected results: slit-scan simulation and output files like from fastscan, report (including manual)

