PITZ Run Coordination (2019 / week 21)

Gun4.2 run

H. Qian Zeuthen, 6.06.2019

Shift planning for week 21

Flattop emittance 1nC (0.5nC): (MK, HQ) •BSA=1.1mm; 1.3mm; 1.2mm (remeasure?),... •use gun quads •Imain scan for each BSA, •then 3x3 statistics

Mon May-27	Tue May-28	Wed May-29					
Krasilnikov Koschitzki							
Niemczyk Shu	Flattop emittance 1nC						
Automatic Conditioning	Automatic Conditioning						

1 nC emittance

BSA scan, Flattop laser ~17ps, gun 60 MV/m, EMSY1 → HIGH1.SCR4

- Finished 1 nC emittance BSA scan at 1.3 mm
 - Optimum BSA by different scaled emittance is different (1.4 mm and 1.2 mm)
 - Scaled1 = unscaled*scalingFactor,
 - Scaled2 = unscaled*scalingFactor²

BSA	Scaled1	Scaled2	ScalingFactor
1.1	0.999	2.352	2.355
1.2	0.860	0.985	1.146
1.3	0.791	1.019	1.288
1.4	0.727	1.127	1.550
1.6	1.024	1.407	1.374

1 nC emittance

Emittance vs Camera gain

BSA 1.3mm, Flattop laser ~17ps, gun 60 MV/m, EMSY1 → HIGH1.SCR4, X emittance comparison •

Page 4

First observations from the gamma-ray detectors at the end of tunnel in the future hole location

- Each pulse from the gamma-ray detector's PMT has about 20ns duration
- Noisy, non-regular and considerable number of pulses produced from dark-current (normal)
- Two kind of results when beam is ON (with different set of screens on front of beam)
 - Strange amplitude in first few pulses : some internal electronic capacity during the electron line?
 - Strange amplitude increase at the end of pulses
- Saturated on low transmission (~1-2%)
 - When I lowered the electron energy by changing the booster phase

it goes out of saturation (Scintillator single gamma-ray energy response?)

- Strangely, non-regular pulses was vanished during beam ON
 - No or low-detections of dark-current produced gamma-rays
 - It maybe result the less integrated radiation in comparison to dark-current produced gamma-ray pulses
- My conclusion:
 - I can not trust the data before knowing more the detector characteristics, its electronics and checking
 With standard known source like caesium-137 or Cobalt-60 and also we need have program-time for it

-100

Difficulties

- Difficulties
 - Water
 - RF5 water flow IL (To be checked during shutdown)
 - Laser
 - Laser failure from the night run (cooling water IL), temporarily fixed, to be worked on during shutdown
 - OSS is misaligned during water repair

Shift planning for weeks 24/25

Photocathode flattop laser

Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun			
Jun-11	Jun-12	Jun-13	Jun-14	Jun-15	Jun-16	Jun-17	Jun-18	Jun-19	Jun-20	Jun-21	Jun-22	Jun-23			
Tin	Startup ning syster LLRF/laser	m /		I	TEM grid				TEM grid	1	1		XFEL operation slice emittance emittance vs gradient	69 14 40	When Q1-Q2 Q1-Q4
			Ħ				TH ₇						bunch shape distorsion	7	Q1-Q2
			Fastso	an methoo study	lology	Bo	octor trans	ofor	Li	Gu	n quads		Gun quads Coupler kick	3	Q1
				-			oster trans	sier					XFEL R&D	41	
			Π										Cs2Te response time	3	Q1 ?
									Nie		Emissis		Green cathode test	7	Q4
									Gri		Emissio	on curve	Gaussian truncation & DOE	14	Q1-Q3
							1						ELLA beam test	14	Q3-Q4
													thermal imaging	3	Q1-Q2
Gross	Gross	Gross	Koschitzki	Koschitzki	Koschitzki	Koschitzki	Gross	Koschitzki	Koschitzki	Gross	Gross	Gross	XFEL user	14	
Jachmann	Jachmann	Jachmann	Jachmann	Jachmann	Jachmann	Koehler	Koehler	Koehler	Koehler	Koehler	Koehler	Koehler	THz	14	Q1-Q4
Rueger	Rueger	Rueger	Rueger	Rueger	Rueger	Maschmann	Maschmann	Maschmann	Maschmann	Maschmann	Maschmann	Maschmann			
Kalantaryan	Kalantaryan	Kalantaryan	Kalantaryan	Kalantaryan	Kalantaryan	Kalantaryan	Kalantaryan	Kalantaryan	Kalantaryan	Kalantaryan	Kalantaryan	Kalantaryan	PITZ budget	26	
Schade	Schade	Schade	Schade	Schade	Schade	Schultze	Schultze	Schultze	Schultze	Schultze	Schultze	Schultze	Plasma	18	Q2
Heuchling	Heuchling	Heuchling	Heuchling	Heuchling	Heuchling	Schmal	Schmal	Schmal	Schmal	Schmal	Schmal	Schmal	UED	6	Q1-4
Krasilnikov	Krasilnikov	Krasilnikov	Krasilnikov	Krasilnikov	Krasilnikov	Vashchenko	Gross	Krasilnikov	Oppelt	Gross	Gross	Gross	BPM commissioining	2	
Li	Huang	Li	Huang	Li	Huang	Huang	Huang	GUEST	Koschitzki	Huang	Melkumyan	Melkumyan			
	Ag	gray field means the	status has change	d since the last ver	sion	y-2019		Ag	gray field means the	e status has change	ed since the last ver	sion			

Discussion of a new scaled emittance & camera gain for FASTSCAN

H. Qian & M. Krasilnikov Zeuthen, 6.06.2019

Outline

- Motivation
- Why scaled emittance for fastscan?
- How to scale up the unscaled emittance
- A simulation to compare two ways of emittance scaling
- Experiment observations
 - 1 nC @60 MV/m: emittance vs camera gain (Flattop laser)
 - 0.25 nC @XFEL gradient: measured emittance vs simulations (Gaussian laser)
 - 0.1 nC @40 MV/m: Gaussian laser vs flattop laser (covered by MK in a different talk)
- An analytical model for estimating the importance of noise floor in FASTSCAN
- Possible ways to improve SNR for future PITZ emittance measurement
- Discussions: how to proceed with fastscan now?

Motivation

- 1 nC emittance results are quite different with different camera gains
 - Raffael 'accidentally' measured 1 nC emittance with low camera gain (4 dB) and showed much larger emittance values
 - Grygorii confirm the results with more statistics

Why scaled emittance for fastscan?

• Noise floor and image filter removes the low density phase space.

How to scale up the unscaled emittance

Current scaling factor

RMS emittance definition

$$\varepsilon = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2} = \sqrt{\langle x^2 \rangle} \sqrt{\langle x'^2 \rangle - \frac{\langle xx' \rangle^2}{\langle x^2 \rangle}} = \sigma_x \sigma_{x'}^{uncorrelated}$$

Scaling factor

How to scale up the unscaled emittance

Another way of scaling

• Another way to scale up the emittance

 $\sigma_x^2(100\%)\approx\sigma_{x,EMSY}^2=\varepsilon_{100\%}\beta_{100\%}$

$$\sigma_x^2(unscaled) \approx \sigma_{x,slit}^2 = \varepsilon_{unscaled}\beta_{unscaled}$$

Scaling factor =
$$\frac{\varepsilon_{100\%}}{\varepsilon_{unscaled}} \approx \frac{\sigma_{x,EMSY}^2 \beta_{unscaled}}{\sigma_{x,slit}^2 \beta_{100\%}}$$
 ~1?

Two scaled emittance

• Scaled1 = unscaled*
$$(\frac{\sigma_{\chi}^{EMSY}}{\sigma_{\chi}^{slit}})$$

• Scaled2 = unscaled*
$$(\frac{\sigma_{\chi}^{EMSY}}{\sigma_{\chi}^{slit}})^2$$

• Current emittance scaling in Emcal

 $\varepsilon_{100} = \sigma_x^{100} \sigma_{x'}^{uncorrelated, 100} \approx \sigma_x^{EMSY} \sigma_{x'}^{uncorrelated, 100}$

 $\varepsilon_{unscaled} = \sigma_x^{unscaled} \sigma_{x'}^{uncorrelated, unscaled} = \sigma_x^{slit} \sigma_{x'}^{uncorrelated, slit}$

A simulation to compare two ways of emittance scaling

0.3

0.25

0.2

0.1

0.05 0

0.3

0.25

0.2

0.1

0.05

0

0.8

0.2 0

0

0.0 GT charge 0.4

0

emit 0.15

0

emit emit

Pure Gaussian phase space

- Gaussian phase space •
 - Twiss parameters •

A simulation to compare two ways of emittance scaling

Simulated phase space from ASTRA

- Simulated phase space (200k macro particles)
 - 1nC, 60 MV/m, ~20 ps

0.2

0.3

0.4

0.5

charge cut

0.6

0.7

0.9

0.8

1 nC @60 MV/m: emittance vs camera gain (Flattop laser)

• BSA 1.3mm, Flattop laser ~17ps, gun 60 MV/m, EMSY1 → HIGH1.SCR4 (f160), X emittance comparison

1 nC @60 MV/m: emittance vs camera gain (Flattop laser)

• BSA 1.3mm, Flattop laser ~17ps, gun 60 MV/m, EMSY1 → HIGH1.SCR4 (f160), X emittance comparison

1 nC @60 MV/m: emittance vs camera gain (Flattop laser)

• BSA 1.3mm, Flattop laser ~17ps, gun 60 MV/m, EMSY1 → HIGH1.SCR4 (f160), X emittance comparison

0.25 nC @XFEL gradient: measured emittance vs simulations (Gaussian laser)

• Gaussian laser ~7ps, gun 6.3 MeV/c, EMSY1 → HIGH1.SCR4 (f160)

- Simplification in the model
 - Pure Gaussian phase space
 - no coupling between x and y phase space
- What's different between noise floor in phase space and noise floor in FASTSCAN
 - One point in phase space is a projection of one column of pixels in beamlet
 - The noise floor in FASTSCAN should be defined in the beamlet image

• The model

• The model (cont'd)

Possible ways to improve SNR for future PITZ emittance measurement

- Use low camera gain (10-13 dB max?)
 - Use lyso screen or more efficient screen
 - Increase pulse number until max (<20 pulse?)
 - If pulse number too high, then improve light collection efficiency for optics, bigger lens, closer to vac window?
 - Improve image filter or data taking.
 - Current EMCAL image filter are cutting signals which can be distinguished by eye on video client
 - Probably due to strange noise pattern at high camera gain and single frame for signal.

Camera noise vs gain

For a single pixel

		Can	nera G	ain	Camera Gain
0.6 0.5 0.4 0.3 0.2 0.1 0 0 0	5	ave	_nois	20 25 30	35 30 25 20 15 10 5 0 0 5 10 15 20 2 20 2 25 2 2 2 2
25	•	11.5	20.5	0.205	rme noice
24	0	13.4	32.3	0.21	Camera Gain
23	0	11.02	26.16	0.21	
22	0	15.34	31.25	0.25	0 5 10 15 20 25
21	0	15.64	23.7	0.36	
20	0	12.76	21.8	0.305	
17	4.5	15.95	21.8	0.33	20
14	17	22.06	23.3	0.435	30
10	33	34.6	18.5	0.49	40
7	44	46.13	17.4	0.46	50
4	54	54.76	11.5	0.49	60
0	66	65.84	7.1	0.54	70
Gain	median	average	rms	than ave noise	average noise

Possible ways to improve SNR for future PITZ emittance measurement

- Another way to measure PITZ emittance .
 - Insert a pepper pot mask at EMSY station (remove space charge effect)
 - Use quadrupole scan to measure both projected and slice emittance (improved SNR)
 - Compared to low charge beamlet during slit scan, the charge is much higher •

Example from UCLA:

- laser-drilled pepper pot
- circular holes of 15 µm diameter
- 85 µm spacing
- ~3% transmission.

Pros:

- both issues of space charge & SNR are improved. 1)
- In principle only single to few pulses are needed with 2) efficient imaging system (good for facilities without long pulse linac or high energy ($>\sim$ 50 MeV) linac).

Cons:

- 1) Needs good uniformity of holes
- Scattering signal may be focused again by quadrupoles 2)
 - intensity of scattering signal
 - emittance of scattering (scattering angle)
 - beam aperture between mask and quadrupole
- Need good calibration of quadrupole model 3)

Discussions: how to set up fastscan for the next run

- Max camera gain?
- YAG or LYSO?
 - a program is planned to compare both screens next week vs camera gain
- Max pulse number?
- Scaling factor?
 - Scaled1 or scaled2
- Optimum BSA and solenoid current based on
 - scaled1 or scaled2?

٠

. . .