Non-scaled, scaled, scaled-2, core, fractional-core, etc.

Emittance measurements at PITZ: used setup → close to CW SC gun: 40MV/m, 100pC

M. Krasilnikov, 06.06.2019

Why Motivation

- Significant charge cut by slit-scan technique
- Smaller emittance → becomes sensible to emittance scaling procedure
- Core emittance figure of merit for FEL
- Bring measured emittance closer to simulations?
- Next steps in emittance optimization procedure

Experimental data used:

"PITZ experimental optimization for the aimed cathode gradient of a SC CW RF Gun"

- Ecath=40MV/m, MMMG
- Booster: 3MW, MMMG
- Qbunch=100pC
- Temporal: Gaussian (~6ps FWHM) vs. flattopp (~18ps FWHM)
- Optimized: BSA, Imain, gun quads
- E-beam trajectory: might be not fully optimized

PITZ gun at CW SC gun gradient

100 pC emittance, gun 4.6 MeV/c; final 17.8MeV/c
Photocathode laser: temporal Gaussian ~6.2ps FWHM

PITZ gun at CW SC gun gradient

Optimized 100 pC emittance min[ε_{xy} (Imain)](BSA)

longitudinal profile with TDS phase=43.4 deg, FWHM = 13.5 \pm 0.1 ps PITZ gun at CW SC gun gradient profile Gaussian, 100 pC, BSA=0.7mm 1x3 statistics Xemit=(0.301 +/-0.004) mm mrad **BSA 0.7 mm** Beam size and scaled emittance at EMSY1 for BSA 0.7mm 0.1nC, Yemit=(0.389+/-0.005) mm mrad gun (40MV/m) at MMMG, booster at MMMG deg XYemit=(0.342+/-0.003) mm mrad 1.5 time (ps) longitudinal profile with TDS phase=-136.8 deg, FWHM = 13.0 ± 0.1 ps 1.3 2.5 10 3 emittance, um 0.9 beam size, 0.5 time (ps) 0.3 0.5 0.1Start Quad optimisa -0. 280 250 255 260 265 275 1x3 statistics Imain, Amps Xemit=(0.236+/-0.004) mm mrad Yemit=(0.292+/-0.004) mm mrad EmitX, mm mrad -EmitY, mm mra -EmitXY, mm mrad XYemit=(0.263+/-0.003) mm mrad ---Yrms, mm -**★**-XYrms, mm →-Xrms, mm Optimizing gun quads Print GUI to Logbool DESY. Page 5

Charge cut analysis

Gaussian, 100 pC, BSA=0.7mm; Imain=272A

non-scaled emitX=0.244um

Further charge cut applied to the measured phase space

Other approaches to emittance calculation

Fractional core emittance

e.g. I.V. Bazarov, Overview of Photoinjectors for Future Light Sources, March 6, 2012

- Single RMS emittance definition is inadequate for linacs
 - · Beams are not Gaussian
 - Various groups report 95% emittance or 90% emittance (or don't specify what exactly they report)
- The right approach
 - Measure the entire phase space, then obtain emittance of the beam vs. fraction (0 to 100%)

Single rms emittance is inadequate for comparisons

- Better to quote 3 numbers
 - 100% rms emittance (or 95% or 90%)
 - core emittance (essentially peak brightness)
 - core fraction

FIG. 8. Radial phase-space distributions (left) and corresponding emittance vs. fraction curves (right). All distributions are scaled to have $\epsilon = 1$. Core fraction and emittance for different distribution types are shown as well.

26

Charge cut and core emittance analysis

Gaussian, 100 pC, BSA=0.7mm; Imain=272A

Standard plots + scaled-2 emittance

Charge cut using "nobase" method

Charge cut using "nobase" method

Charge cut using "nohalo" method

Charge cut using "nohalo" method

PITZ gun at CW SC gun gradient with Flattop laser pulses

Optimized 100 pC emittance min[ε_{xy} (Imain)](BSA)

Standard plots + scaled-2 emittance

Charge cut analysis

Gaussian, 100 pC, BSA=0.7mm; Imain=271A

Charge cut and core emittance analysis

Flattop, 100 pC, BSA=0.7mm; Imain=271A

$arepsilon_{scaled}$ =	$= \varepsilon_{non-scaled}$	· SF
$\varepsilon_{scaled-2}$	$= \varepsilon_{non-scaled}$	$\cdot SF^2$

Parameters	X	Y
Non-scaled emittance	0.236 mm mrad	0.266 mm mrad
Charge cut	36%	8%
Scaled emittance	0.315 mm mrad	0.302 mm mrad
Core fractional emittance	0.163 mm mrad	0.120 mm mrad
Core fractional charge	60%	71%

Charge cut using "nobase" method

Charge cut using "nobase" method

Charge cut using "nohalo" method

Charge cut using "nohalo" method

Conclusions and Outlook

Phase space and emittance from slit scan

- Single slit scan technique at PITZ yields significant charge cut (w.r.t. EMSY beam image projection)
- Precise determination of the 100% RMS emittance is significantly complicated (non-Gaussian beams, noise, camera sensitivity, etc.)
- Core emittance should be taken into considerations
- Values currently available from slit-scan at PITZ:
 - Beam RMS size at EMSY
 - Non-scaled emittance
- Values and dependencies which could be derived from the slit scan data:
 - Scale factor, scaled emittance and scaled-2 emittance
 - Charge cut SoP←>EMSY-projection →Qcut
 - Core non-scaled emittance (Q=0..Qcut): two methods ("nobase" and "nohalo")
 - Fraction emittance (linear trend at Q~0 from "nohalo" core emittance) and fraction charge → need more interpretation?
- Final decision to be taken after better agreement with simulations will be achieved...
- Outlook:
 - Repeat scans with increased NoP → then superpose phase spaces eliminating saturated cores?
 - Proposals for a modified slit-scan procedure → next slide

Outlook: Proposals for a modified slit-scan procedure

Detailed "stop-and-go" procedure?

- 1. Take EMSY and MOI beam images, treat EMSY image (filtering, BKG--)
- 2. Make "standard" scan: fixed (CamGain, NoP)
- 3. EMSY->SoP fit → find scan range (Xfrom:Xto) based on EMSY profile
- 4. Scan procedure (slit pos=Xfrom:Step~10-100um:Xto), for each position:
 - a) Tune (CamGain, NoP) for the 3000 criterion for the raw beamlet image (autogain function!)
 - b) Record beamlen image with statistics (10+10frames?)
- 5. Phase space reconstruction:
 - a) For each beamlet treated image (filtering, BKG--) obtain its projection
 - Normalize beamlet projection profile to corresponding value in the EMSY profile
 - c) Put all normalized profiles into the phase space → calculate 100%(?) rms emittance

Back up

Emission curves for various laser spot diameters (BSAs)

100 pC emittance, gun 4.6 MeV/c; final 17.8MeV/c

Photocathode laser: temporal Gaussian ~6.2ps FWHM and Flattop 18-19ps FWHM

