Analysis of 4 Gun Quadrupoles Behavior. Step 1.

Motivation: based on the collected data make proposal of GunQuads tuning procedure(s) that will be tested during the PITZ run period 15-18.04.2019

Igor Isaev PPS Zeuthen, 11.04.2019

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Data collection: experiments

For the data collection there were performed detailed GunQuad scans:

- GQ1 vs GQ2
- GQ3 vs GQ4
- GQ1+GQ2 as rotational quadrupole vs
 GQ1+GQ2 as rotational quadrupole

at the following parameters:

- Ibucking = 0A
- Booster: OFF
- Gun power **5.8MW**
 - Normal solenoid polarity
 - Low.Scr3 (Imain=360A)
 - High1.Scr1 (Imain=336A)
 - Opposite solenoid polarity
 - Low.Scr3 (Imain=-360A)
 - High1.Scr1 (Imain=-336A)
- Gun power 4.5MW
 - Normal solenoid polarity
 - High1.Scr1 (Imain=299A)
 - Opposite solenoid polarity
 - High1.Scr1 (Imain=-299A)

Example:

- Quad Scan GQ1 vs GQ2
- Gun power: 4.5MW
- Imain = 299A
- Ibucking = 0A
- High1.Scr1
- Normal Solenoid Polarity
- Name: G45H1S1_GQ12_Norm

Data Analysis: roundness calculation.

Ellipse fitting algorithm

Direct algorithm

- 1. Rotating the original image (imrotate)
- Getting projection (projection = sum(imc,1)) 2.
- 3. Calculating RMS size of the projection
 - mu = sum(x*y)/sum(y)•
 - RMS_size = sqrt(sum((x-mu)^2 *y) /sum(y)) ٠
- 4. Calculating roundness for original image as integral value of **RMSvsAngle array**

Data Analysis: results

Asymmetric beam shape orientations

-0.90

-0.60

-0.30

0.30

0.60

a 0.00

Larmor angle at GQ12 is 28.6deg Final Larmor angle is 74.87deg \Rightarrow difference is 46.27deg

x2 (Normal and Opposite polaroties) => 92.54deg

Data Analysis: results GQ12 and GQ34 scans

Currents Settings: -2.1 : 0.3 : 2.1 [A]

Intermediate conclusions:

as stronger solenoid as stronger
GQ12 and GQ34 amplitude that
should applied for compensation

Larmor experiment interpretation: "tracking back" towards cathode

Agnles Settings: 0 : 22.5 : 180 [deg] -180 : 22.5 : 0 [deg]

Intermediate conclusions:

- GQR Amplitude does not significantly change map distribution
- There is always dependence GQR1 vs GQR2 angle for values valley <- this must be characterized
 - This dependence can be utilized for the tuning

Proposals for Gun Quadrupoles tuning

The main tool for the Tuning is the Gun Optimizer created by Gregor Loisch

- A. Set round beam at H1S1 by G2 only, and afterwards tune GQ34 at the same screen
- B. Set round beam at H1S1 by G12, and afterwards tune GQ34 at the same screen
- C. Set round beam at H1S1 by G12, and afterwards tune GQ34 at different screen
- D. (?) Iteratively Adjust GQ12 at H1S1, then tune GQ34 at H1S2 and repeat
- E. Use GQ1234 tuning and initial point take from dependence GQR1 vs GQR2

Preferable constraints :

- The GQ settings must be limited to 0.6A
- Do not use Low.Scr3 -> too small images

BACKUP slides

Analysis of 4 Gun Quadrupoles Behavior | PPS | Igor Isaev | 11.04.2019

Gun powe	e 4.5MW					Gun powe	e 5.8MW					Gun powe	e 5.8MW				
Screen	High1.Scr	1				Screen	High1.Scr2	L				Screen	Low.Scr3				
Imain	299A					Imain	336A					Imain	360A				
Ibucking	0A					Ibucking	OA					Ibucking	0A				
Solenoid	Normal		Opposite		Units	Solenoid	Normal		Opposite		Units	Solenoid	Normal		Opposite		Units
Quad	Α	В	Α	В		Quad	Α	В	Α	В		Quad	Α	В	Α	В	
GQ12	0	0.9	0	0.3	А	GQ12	0	1.2	-0.3	0.6	А	GQ12	0.3	0.6	0.6	0.9	А
GQ34	-0.3	0.3	-0.3	-0.3	А	GQ34	-0.6	0.6	-0.3	-0.6	A	GQ34	-0.6	-0.3	0	0.6	A
GQ34			0	-0.3	А	GQ34			-0.3	-0.3	А						
						GQ34			0	-0.6	A						
						GQ34			0	-0.3	А						
GQR 0.5A	-67.5	67.5	180	135	deg	GQR 0.5A	. 0	-22.5	-157.5	180	deg	GQR 0.5A	-135	112.5	0	22.5	deg
						GQR 0.5A	-45	45			deg	GQR 0.5A			0	0	deg
						GQR 0.5A	-22.5	-22.5			deg	GQR 0.5A			22.5	45	deg
GQR 1A	0	-135	180	135	deg	GQR 1A	-67.5	90	180	112.5	deg	GQR 1A	-135	157.5	45	-67.5	deg
GQR 1A	0	-112.5			deg	GQR 1A	-67.5	112.5			deg	GQR 1A			-45	135	deg
GQR 1A	22.5	-90	1		deg	GQR 1A	0	-90			deg						
GQR 1A	-67.5	135			deg												
Decomp	osition for	onstant ar	nd sween n	arts vs norr	mal and on	nosite nolarities											
Decomp					nar ana op	Const-Sw	een Quads	<- for nor	mal and on	nosite nola	arities						
						x1+x2=A1	v1+v2=B1	. 101 1101		poorce por						-	
						x1-x2=A2	v1-v2=B2										
						x1 + Δ1/2+	Δ2/2										
						x2=Δ1-x1	N2/2										
						×2 ~~1 ×1											
	GQ12			GQ34			GQ12			GQ34			GQ12			GQ34	
	QA	QB		QA	QB		QA	QB		QA	QB		QA	QB		QA	QB
const	0	0.6	const	-0.15	0	const	-0.15	0.9	const	-0.3	0.15	const	0.45	0.75	const	-0.3	0.15
sweep	1 0	0.3	sweep	-0.15	0.3	sweep	0.15	0.3	sweep	-0.3	0.45	sweep	-0.15	-0.15	sweep	-0.3	-0.45
																-	

G45H1S1_GQR12scan05A_Norm

G58LS3_GQ12_Norm