Analysis of 4 Gun Quadrupoles Behavior. Step 1.

Motivation: based on the collected data make proposal of GunQuads tuning procedure(s) that will be tested during the PITZ run period 15-18.04.2019

```
Igor Isaev
PPS
Zeuthen, 11.04.2019
```


Gun Quadrupoles Setup at PITZ

Design 1: GQ1

Design 2: GQ1,2
Design 3: GQ1,2,3,4

Parameters of the $3^{\text {rd }}$ design:

- Combination of a normal and a skew quads:
- GQ1 and GQ3 are Normal quads
- GQ2 and GQ4 are Skew quads
- Aluminum frame
- Non-magnetic screws
- GQ12 Zposition $=233 \mathrm{~mm}$ (solenoid begin 208.5 mm)
- GQ34 Zposition $=315 \mathrm{~mm}$ (solenoid end 343.5 mm)

Data collection: experiments

For the data collection there were performed detailed

GunQuad scans:

- GQ1 vs GQ2
- GQ3 vs GQ4
- GQ1+GQ2 as rotational quadrupole vs
GQ1+GQ2 as rotational quadrupole
at the following parameters:
- lbucking = OA
- Booster: OFF
- Gun power 5.8MW
- Normal solenoid polarity
- Low.Scr3 (Imain=360A)
- High1.Scr1 (Imain=336A)
- Opposite solenoid polarity
- Low.Scr3 (Imain=-360A)
- High1.Scr1 (Imain=-336A)
- Gun power 4.5MW
- Normal solenoid polarity
- High1.Scr1 (Imain=299A)
- Opposite solenoid polarity
- High1.Scr1 (Imain=-299A)

Example:

- Quad Scan GQ1 vs GQ2
- Gun power: 4.5MW
- Imain = 299A
- lbucking = OA
- High1.Scr1
- Normal Solenoid Polarity
- Name: G45H1S1_GQ12_Norm

\square

[^0]

Data Analysis: roundness calculation.

Ellipse fitting algorithm

1. Rotating the original image (imrotate)
2. Getting projection (projection = sum(imc, 1))
3. Calculating RMS size of the projection

- $m u=\operatorname{sum}\left(x^{*} y\right) / s u m(y)$
- RMS_size $=\operatorname{sqrt}\left(\operatorname{sum}\left((x-m u)^{\wedge} 2 * y\right) / s u m(y)\right)$

4. Calculating roundness for original image as integral value of RMSvsAngle array

$$
=0.7716
$$

Filtered image Roundness

Data Analysis: results

G45H1S1 GQ12 Norm

G45H1S1 GQ12 Opps

Asymmetric beam shape orientations
GQ1 $=-2.1 \mathrm{~A}$ GQ2 $=0 \mathrm{~A}$

G45H1S1 GQ12 Norm

G45H1S1 GQ12 Opps

Larmor angle at GQ12 is 28.6 deg
Final Larmor angle is 74.87 deg \Rightarrow difference is 46.27 deg
x2 (Normal and Opposite polaroties) => 92.54deg

Data Analysis: results GQ12 and GQ34 scans

Currents Settings:

$-2.1: 0.3: 2.1$ [A]

Intermediate conclusions:

- as stronger solenoid as stronger GQ12 and GQ34 amplitude that should applied for compensation

Larmor experiment interpretation: "tracking back" towards cathode

 G58H1S1 GQR12scan05A Norm G58H1S1 GQR12scan1A Norm G58H1S1 GQR12scan05A Opps G58H1S1 GQR12scan1A Opps

Intermediate conclusions: GQR Amplitude does not significantly change map distribution

- There is always dependence GQR1 vs GQR2 angle for values valley <- this must be characterized
This dependence can be utilized for the tuning

Proposals for Gun Quadrupoles tuning
 The main tool for the Tuning is the Gun Optimizer created by Gregor Loisch

A. Set round beam at H1S1 by G2 only, and afterwards tune GQ34 at the same screen
B. Set round beam at H1S1 by G12, and afterwards tune GQ34 at the same screen
C. Set round beam at H1S1 by G12, and afterwards tune GQ34 at different screen
D. (?) Iteratively Adjust GQ12 at H1S1, then tune GQ34 at H1S2 and repeat
E. Use GQ1234 tuning and initial point take from dependence GQR1 vs GQR2

Preferable constraints :

- The GQ settings must be limited to 0.6 A
- Do not use Low.Scr3 -> too small images

BACKUP slides

Decomposition for constant and sweep parts vs normal and opposite polarities

G45H1S1_GQ12_Norm

45.00-(2) (2) (2) (2) (2) (2) (2) 67.50 (2) (2) (2) (2) (2) 90.00 (2) (2) (2) (2)

[^0]: DESY. PITZ | Analysis of 4 Gun Quadrupoles Behavior |PPS | Igor Isaev |11.04.2019

