Noise-cut filters: further study plans

Filter performance merits Multi-objective optimization Optimization of noise cut filters Future filters

Georgi Georgiev

PITZ Physics Seminar 14.03.2019

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Noise-cut filter summary

Previous results

- Overall low signal to noise ratio (SNR)
 - Signal mixed with noise of similar magnitude
- Noise-cut mask out noise dominated regions
- Emcalc filter
 - De-facto standard, oldest
- Holger Huck filter
 - Most sensitive
- SNR and median filter
 - SNR utilized, newest
- Unsatisfactory performance
 - Large charge cut (on occasion above 50%)
 - Unexpected behavior
 - Thermal emittance, slice emittance, etc.

Noise-cut filter performance

Categorizing of performance merits

- Performance indicators split into two groups
- Qualitative
 - Judged by intuition or principles
 - Mask of interest shape
 - Phase space shape
 - Match to reference
 - Any (mis)match to expected trend
- Quantitative
 - Measured numerically
 - Signal preservation
 - Noise elimination
 - Fit parameters
 - Etc.

Ideal filter: removes all noise, keeps all signal.

Multi-objective optimization

Definitions and terminology

- Multi-objective optimization problem: minimize $\vec{f}(\vec{x})$
- **Objective functions** $y_i = f_i(x_j); i = 1 ... m; j = 1 ... n$
 - Several competing objectives, m > 1
- **Decision space** *n*-dimensional space of candidate solutions \vec{x}
- **Objective space** *m*-dimensional space of objective values \vec{y}
 - Decision space is mapped into objective space by $\vec{f}(\vec{x})$
- Decision making
 - A priory define ideal objective and search for best fit solution (single objective optimization)
 - A posteriory find optimal set of solutions and then decide on selection
 - Interactive: a priory with dynamically adjusted ideal

Multi-objective optimization is needed when there is a trade-off between different objectives: improving one objective worsens other objective(s). Often trivial scalarization to single objective optimization is *not* applicable.

Examples:

Optimize <u>quality</u> and <u>difficulty</u> of manufacture

Optimize bunch length and emittance

Optimize <u>camera gain</u> and <u>number of pulses</u> for fastscan

Pareto front

Edgeworth-Pareto dominance and Pareto optimal set

- Edgeworth-Pareto dominance a solution is nondominated if it is better in at least one objective and not worse in any objectives than any other solution
 - $\forall i : y_i^a \le y_i^b$ and $\exists j : y_j^a < y_j^b$; $\overrightarrow{y^a}$ is non-dominated, $\overrightarrow{y^b}$ is dominated
- Pareto front objective-space front by the minimal set of non-dominated solutions (Pareto optimal set)
 - Practically the set of "best" solutions
 - Information on compromises
 - Information on decision-space distance
 - A posteriory decision making
- Scalarization to single objective optimization
 - Occasionally miss useful information

Optimization of noise-cut filters

Objective space and decision space

- Filter parameters (on noisy images)
 - Set to remove all noise much of the signal is removed
 - Set to keep all signal much of the noise remains
 - What to **compromise**? → multi-objective optimization
 - Objectives: Excluded signal and Noise presence
- Emcalc filter 2(+1) parameters
 - Multiplier of $\sigma_{background}$ threshold, number of iterations, L-shape or square shape switch
- Holger Huck filter 2(+1) parameters
 - Multiplier of $\sigma_{background}$ threshold, Gaussian sigma, truncated size of Gaussian
- SNR and median filter **3** parameters
 - **SNR** cut plus **multiplier** of $\sigma_{background}$ threshold, median filter size

Ideal filter: removes all noise, keeps all signal.

SNR and median filter threshold formula (pixel-wise):

 $signal > SNR_{cut} \times \overline{background} + N \times \sigma_{background}$

Only the SNR and median filter has threshold that combines the **SNR** and $\sigma_{background}$.

Future filters

Proposals for future studies

- Introduction of SNR threshold to Emcalc3 and Holger Huck filters
- Tabulation of "best" working points (subset of Pareto front)
- Multiple data sets
 - Same objectives
 - Comparing Pareto fronts for each set
 - Combined objectives: median, mean, max, 90th percent
 - Data set specific objectives
 - Filter performance over wide range of experiments
- Filter comparison by Pareto front as "signature"
 - Unbiased comparison
- Pareto front based analysis beyond noise cut

Conclusion

Summary and outlook

- Generalized approach to compare and improve
 - Fair
 - Consistent
 - Clear
- More quantitative objectives
 - Case specific
 - Scalarized previous decision (keeps 2D objective space)
- Combination of advantages of noise-cut filters
 - SNR utilizing threshold

Thank you!

References: M. T. M. Emmerich, A. H. Deutz *A tutorial on multiobjective optimization: fundamentals and evolutionary methods*

G. Chiandussi, M. Codegoneb, S. Ferrero, F.E. Varesio, *Comparison of multi-objective optimization methodologies for engineering applications*