Virtual Pepper-Pot technique: procedure and results

2,5

Georai Georaiev

PPS 08.03.2019

•

٠

•

٠

•

Fitting slit scan and EMSY

Offset, normalization, charge cut

- Same beam same curves
 - EMSY projection along an axis
 - Sum of pixels (SoP) of beamlets along an axis
- Fitting parameters
 - Position shift
 - Scale normalization
 - Zero level difference
- Charge cut
 - Fraction of the beam not measured

Scale normalization to common point (EMSY) of X and Y slit scan images.

Part of the beam (halo and tail) **excluded** from further analysis.

2D phase space

Phase space images and 2D emittance

- Reconstructed phase spaces
- Matched with EMcalc3
 - Reproduced noise-cut filter
 - Good emittance agreement
- Reference in further analysis

Beamlet crossing (1)

Basic principle and methods

- Reconstruction
 - Two crossed slits \rightarrow small opening
 - Multiple crossed pairs \rightarrow PP mask
 - Beamlet crossing to slit crossing
 - Ideally shall be equivalent
- Crossing methods
 - Must preserve units
 - Must give 0 if any beamlet pixel is 0
 - Pixel-wise geometric mean
 - Pixel-wise minimum value
 - Normalization dependent

Beamlet crossing (2)

Foreign charge and crossing performance

- Challenges
 - X scan, Y scan conditions
 - Image noise
 - Foreign charge
- Pixel-wise geometric mean
 - Systematic error $\propto \sqrt{Q_{fx}}, \sqrt{Q_{fx}}$
- Pixel-wise minimum value
 - Minimizes foreign portions
 - Better choice with foreign charge

Data sample without gun quadrupoles and Imain = 386 A

$$Q_y = Q_0 + Q_{fy}$$

$$Q_{cross} = \sqrt{Q_x Q_y} = \sqrt{Q_0 (Q_0 + Q_{fx} + Q_{fy})} + Q_{fx} Q_{fy}$$

$$Q_{cross} = \min(Q_x, Q_y) = Q_0 + \min(Q_{fx}, Q_{fy})$$

Case	ϵ_x (norm.)	ϵ_y (norm.)	Ratio ϵ_x/ϵ_y	$\epsilon_x \epsilon_y$
Slit scan (not VPP)	0,799	0,643	1,24	0,514
Min. val., EMSY normalized	0,922	0,685	1,35	0,632
Min. val., ratio optimized normalization	0,878	0,707	1,24	0,620
Geometrical mean	0,933	0,748	1,25	0,699
Min. val., incorrect normalization A	1,17	0,618	1,88	0,720
Min. val., incorrect normalization B	0,742	0,887	0,84	0,659

4D transverse beam matrix

Definitions and calculation

- Covariance matrix of the transverse phase space
- 4D transverse emittance with correlations
- Element calculation in VPP

$$\epsilon_{4D}^{4} = \begin{vmatrix} \langle xx \rangle & \langle xx' \rangle & \langle xy \rangle & \langle xy' \rangle \\ \langle xx' \rangle & \langle x'x' \rangle & \langle yx' \rangle & \langle x'y' \rangle \\ \langle xy \rangle & \langle yx' \rangle & \langle yy \rangle & \langle yy' \rangle \\ \langle xy' \rangle & \langle x'y' \rangle & \langle yy' \rangle & \langle y'y' \rangle \end{vmatrix} = \epsilon_{x}^{2} \epsilon_{y}^{2} - \underline{C_{xy}^{4}}$$

($\langle xx \rangle$	$\langle xx' \rangle$	$\langle xy \rangle$	$\langle xy' \rangle$
	$\langle xx' \rangle$	$\langle x'x'\rangle$	$\langle yx' \rangle$	$\langle x'y'\rangle$
	$\langle xy \rangle$	$\langle yx' \rangle$	$\langle yy \rangle$	$\langle yy' \rangle$
	$\langle xy' \rangle$	$\langle x'y' \rangle$	$\langle yy' \rangle$	$\langle y'y'\rangle$

$$\epsilon_x^2 = \begin{vmatrix} \langle xx \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'x' \rangle \end{vmatrix} = \langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2$$

$$Corr = \sqrt[4]{\frac{\epsilon_x^2 \epsilon_y^2}{\epsilon_{4D}^4} - 1}$$

$$\langle f(x, x', y, y') \rangle = \frac{\sum_{i} \sum_{j} \sum_{k} \sum_{l} f(x_i, x'_j, y_k, y'_l) w_{ik}(x'_j, y'_l)}{\sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{k} \sum_{l} w_{ik}(x'_j, y'_l)}$$

 w_{ik} - crossed beamlets image for i-th horizontal and k-th vertical slit positions

 x'_{j} - x' of j-th pixel column y'_{l} - y' of l-th pixel row

Results: 2D emittance

Method comparison

- Min. val. with EMSY norm ٠
 - Horizontal is higher ٠
- Min. val. with norm for ratio ٠
 - **Best agreement** ٠
- Geometrical mean ٠
 - Both are higher •

Minimum value, EMSY norm

Normalized emittance (quadrupoles off)

0.4 380 382 384 386 Solenoid current [A] Minimum value, Ratio norm

1.8

1.6

[1.4

표 1.2 트

0.6

Emittance

🗕 📥 X (slit scan)

- Y (slit scan)

Minimum value, Geom. mean

Normalized emittance (quadrupoles off)

388

Results: 2D emittance

Gun quads ON and OFF

- Using min. val. crossing for best ratio
- Agreement with slit scan and previous studies
 - Higher at larger Imain

Minimum value cross, Ratio optimized norm

Results: 4D emittance

Correlations

- Pearson coefficient ~ 0.5
 - Coupling between X and Y
 - Small effect on 4D emittance
- Quadrupoles introduce correlations

Correlation study (quadrupoles off)

0.9

1.8

Charge cut

Charge cut and noise cut

- Significant charge cut
 - Above 25% on many points
- SNR and median filtering
 - Small charge cut descrease
 - Negligible difference in emittance

Part of the beam (halo and tail) **excluded** from further analysis.

Conclusions

- Virtual Pepper-Pot results agree with Emcalc3
 - Minimum value crossing with normalization optimized for emittance ratio
- Correlations discovered
 - Gun quadrupoles increase coupling
- Significant charge cut
- Outlook
 - 4D transverse beam matrix eigenvalues eigenemittances
 - Charge cut extrapolation to 0
 - Scaling factor studies
 - Full beamlet reconstruction

THANK YOU!

Centroid velocities

(Bonus slide)

• Centroid particle assigned for each crossed image of the VPP

Emittance invariant

4D kinematic invariant (Bonus slide)

- Transverse emittance invariant (for linear optics)
- Increase at stronger Imain

