High-Brightness Beam Developments at PITZ

Ye Chen for the DESY PITZ Team

The 5th annual meeting of the programme "Matter and Technologies" Helmholtz Institute Jena, March 5-7, 2019

Contents

- PITZ facility
- Laser: towards ultimate low emittance beams → 3D ellipsoidal bunches
- Cathode: development of "green" photocathodes
- **Emission**: photoemission of space-charge dominated beams
- NC CW gun: first results towards upgraded design
- Applications:
 - **THz source:** proof of principle experiments for a high power, tunable THz source for pumpprobe experiments at European-XFEL by using LCLS I undulators
- Summary

Photo Injector Test facility at DESY, Zeuthen site (PITZ)

Development, test and optimization of high brightness electron sources for FLASH and European XFEL + applications

Test-bed for FEL injectors, gun cavities and photo injector subsystems →e.g. lasers

High brightness \rightarrow small ε_{tr} (projected and slice), a variety of beam diagnostics

Tackling **injector operation issues** at FELs

Further studies

- →e.g. cathodes: dark current, photoemission, QE, thermal emittance, ...
- →applications like plasma acceleration, THz, UED, ...

PITZ Collaboration Partners

Founding partners:

- DESY, HH & Z (leading institute)
- HZB (BESSY) (A. Jankowiak): magnets, vacuum
- MBI (S. Eisebitt): cathode laser
- TU Darmstadt (TEMF, T. Weiland, H. DeGersem): simulations

Other national partners:

- Hamburg university:
 - most PhD students;
 - HGF-Vernetzungsfond;
 - generation of short pulses
 - plasma experiments

HZDR:

- BMBF-PC-laser-project between MBI, DESY and HZDR, until ~2009;
- Collaboration between HZB, HZDR, MBI and DESY in SC-gun-cluster

International partners:

- IAP Nizhny Novgorod + JINR Dubna:
 3D elliptical laser pulses, THz radiation
- INFN Frascati + Uni Roma II (L. Palumbo, M. Ferrario): TDS and Emeter pre-studies
- INFN Milano (C.Pagani): photocathodes
- INR Troitsk (L. Kravchuk): CDS, TDS, Gun5
- INRNE Sofia (D. Tonev, G. Asova): EMSY + personnel
- LAL Orsay (A. Stocchi): HEDA1 + HEDA2
- STFC Daresbury (D. Angal-Kalinin, B.Militsyn): phase space tomography
- Thailand Center of Excellence in Physics (T. Vilaithong, Ch. Thongbai): personnel

- YERPHI (V. Nikoghosyan) + CANDLE (V. Tsakanov, B. Grigoryan), Yerevan: personnel
- LBNL Berkeley (W. Leemans): PWFA, NC CW Gun
- SLAC (N. Holtkamp): LCLS-I undulators

Developing 3D ellipsoidal laser pulses

Proof of principle demonstrated with IAP system at PITZ in 2016 (single SLM → dual path)

Comparison with simulated e- beam shapes (500pC):

J. Good et al., Proc. 38th FEL Conf., WEP006 (2017)

SLM capabilities at proper transport

Redesign to true double SLM setup based on commercial Pharos laser:

- Improved stability
- Improved shaping capabilities: independent masking in x-y, spectrograph feedback meas. laser pulse
- Next:
- experiments to quantify shape preserving FHG conversionwith angular chirp
- true 3D shaping with Volume Bragg Gratings → work ongoing

Pharos laser

Spectrograp

Development of green cathodes on INFN LASA plug design

Aim: → better beam quality → simplified photo cathode laser → especially needed for CW operation

 Grow reliable "green" cathodes (K-Cs-Sb compound) on INFN plugs and test them in the PITZ RF-Gun (high cathode gradient + fairly high duty cycle)

- First sequential deposition on test sample in week 47/2017
 - Sb 10 nm → K until max QE → Cs until max QE

Long term measurement

- total extracted **charge** over more than **3 months**
- QE versus time
 - Base system pressure: low 10⁻¹⁰ mbar
 - b. QE decrease depends on light power density (fatigue effect?)
 - → still reasonable QE
- Design new source layout in view of coevaporation; PhD student just started

Space-Charge Dominated PhotoEmission (SCDPE)

and associated beam dynamics in high-gradient photocathode RF guns

At working point: beam extraction at cathode strongly influenced by space-charge effects and cannot be well reproduced by simulations

First simulation results

On intrinsic surface emittance

DESY.

At cathode

Simulated slice emittance at z≈5.3m

- → Time-dependent photoemission effects influence downstream slice emittance!
- \rightarrow For higher charges the $_{3.2}$ effect will be stronger!

Towards upgraded NC CW gun design: first results

Backup gun design for European XFEL CW upgrade, in collaboration with LBNL

- 1st DESY VHF gun with high gradient optimized.
 - Current gun design plugged into LCLS-II injector model shows improvement on emittance (0.09~0.16 μm) and high order energy spread (<3 keV rms) @ 100 pC with I_{peak}=10A.
 - High gradient mode (~30 MV/m) faces uncertainties of dark current and breakdown.
- 2nd design with higher voltage under studies

Parameter	APEX	DESY gun Mode1	DESY gun Mode2	Unit
Frequency	186	217	217	MHz
Voltage	750	860	690	kV
Cathode gradient	19.8	30.0	24	MV/m
Intrinsic quality factor, Q0	3.1E4	3.2E4	3.2E4	
Shunt impedance	6.2	7.4	7.4	МΩ
Nominal RF power for Q0	90	100	64	kW
Stored energy	2.4	2.3	1.9	J
Maximum surface E field	24 (1.7kilp)	38 (2.5kilp)	30 (2kilp)	MV/m
Maximum wall power density	25	35	22	W/cm ²

DESY VHF gun (217 MHz) vs APEX gun (186 MHz)

THz studies towards pump-probe experiments at European XFEL

PITZ-like accelerator based THz source (~20 m)

E.A. Schneidmiller, M.V. Yurkov, (DESY, Hamburg), M. Krasilnikov, F. Stephan, (DESY, Zeuthen), "Tunabale IR/THz source for pump probe experiments at the European XFEL, Contribution to FEL 2012, Nara, Japan, August 2012

Summary

- PITZ: well developed photo injector test facility with detailed beam diagnostics available
 - broad scientific program very relevant for DESY 2030 strategy
 - largest part of activity related to European XFEL (current operation and future upgrades)
 - → can tackle XFEL injector operation issues
 - open for new collaborations
- One of leading institutes on optimizing beam emittance
 → next step: generate high charge quasi 3D ellipsoidal electron beams for ultimate beam quality (see Poster #XX by C. Koschitzki)
- Developments towards "green" photocathodes have started at INFN LASA Milano
- Work on improving the photoemission modeling
- Work on thermal momentum imaging (see Poster #29 by P.-W. Huang)
- Design for NC CW guns ongoing (see Poster #XX by G. Shu)
- Conceptual Design study for high power, tunable THz source for P&P experiments at European XFEL received funding (see Poster #28 by X.-K. Li)

Thank you for your time!

