Train Orbit Studies for XFEL

Summary of first measurements at PITZ

Outline

- Motivation
- Review of previous simulations
- First experimental results
- Summary and Outlook

Ye Chen PITZ Physics Seminar DESY Zeuthen Jan. 2019

Why train orbit studies?

→ follow-up studies of XFEL operation issues

Orbits of bunches over the train

- **Issue:** different orbits for different bunches along the bunch train at XFEL
- PITZ task: What is the cause? How to solve this?
 > related to previous coupler kick studies?
- The offset showed dependencies on
 - Gun detuning from -250 Hz to +6.7 kHz
 - Bunch charge between 100 to 300 pC
 - Gun phase over the RF pulse by 10 degree

But, the change over the bunch train remained the same

Different orbits observed for different bunches along the train (e.g. 160 bunches at 1.1 MHz)

Previous simulations

simulation strategy

What has been done in simulations

→ Particle tracking simulations for Case A — Case F using obtained field maps (frequency detuning between -24 kHz and +18 kHz)

→frequency domain solver
 →mono-frequency excitation method
 →slightly tuning thickness of the gasket for optimum matching
 DESY. PITZ | On XFEL Train Orbit | DESY PITZ | Ye Chen | 25.01.2019

Learned from simulations

simulation results

-10

B -15 **B** -15 **B** -20

-20

-10

10

20

Learned from simulations (cont'd)

simulation results (cont'd)

Learned from simulations (cont'd)

simulation results (cont'd)

- → In experiments, ΔS_{11} | head-tail ≈ 5 dB
 - → ~Comparable with the bunch train between C and D
 - → C: Kick at MMMG: 0.7528 mrad
 - → D: Kick at MMMG: 0.8647 mrad
 - $\rightarrow \Delta K|_{head-tail} \approx 0.112 mrad$
 - \rightarrow @BPM24 XFEL: Δr ≈ ΔK|_{head-tail}(z1-zk) ≈ 93 µm
 - → @BPM25 XFEL: $\Delta r \approx \Delta K|_{head-tail}(z2-zk) \approx 216 \ \mu m \rightarrow fairly agrees with XFEL experiments$

→ the linearity may explain why changing gun temperature at XFEL did not change the tendency of the orbit change along the bunch train

What to be first clarified in experiments

based on simulations, i.e. goals of first experiments at PITZ

- 1. Evidence of kick existence
- 2. Kick slope over gun phase vs. frequency detuning (overheating \rightarrow smaller slope)
- 3. Adjustments of gun phase for kick growth over frequency detuning
- 4. Evidence of kick existence for bunches along the train
- 5. **Momentum change** of bunches along the train vs. gun phase
- 6. Estimation of **beam loading** effect (vs. bunch charge)

Experiments at PITZ

measurement strategy

Single bunch operation

- frequency detuned (Δf) by adjusting gun water temperature (ΔT)
- S11 characterized as ratio of reflected power to forwarded power with cross-checking with Smith Chart readings
- measure bunch position change (Δr) at H1.S1 using both LYSO and YAG
- measure Δr for variable gun phase (Φ) by adjusting gun water temperature (T)
- measure Δr for variable T by adjusting Φ

NB:

- check if MMMG phase changes for different temperature SP
- if beam momentum slightly varies for different temperature SP, adjust gun SP to have the same momentum
- keep solenoid current for H1.S1 fixed

Experiments at PITZ (cont'd)

measurement strategy (cont'd)

Bunch train operation

- frequency detuned (Δf) by adjusting gun water temperature (ΔT)
- S11 characterized as ratio of reflected power to forwarded power with cross-checking with Smith Chart readings
- measure bunch position change (Δr) at H1.S1 using both LYSO
- adjust H1.S1 camera timing to have the last bunch along the train (cross check with NoP±1)
- measure for the selected bunch Δr for variable gun phase (Φ) by adjusting gun water temperature (T)
- measure for the selected bunch Δr for variable T by adjusting Φ

NB:

- check if MMMG phase changes for different temperature SP
- if beam momentum slightly varies for different temperature SP, adjust gun SP to have the same momentum
- keep solenoid current for H1.S1 fixed
- adjust Disp1.Scr1 camera timing to have the last bunch along the train (cross check with NoP±1)
- measure for each selected bunch the beam momentum

Measurement conditions

single bunch operation and bunch train operation

Parameters/conditions:

RF:

Gun SP@ 60.5 (±0.5 when necessary for variable Δ T) Gun phase under consideration: [MMMG-10 MMMG+10] 5.8 MW[±], 200µs, FB on Booster off

Laser:

BSA = 1.0 mm LT adjustable when necessary for 100, 200 and 500 pC Up to 100 bunches Pulse length

Observation during 3 shifts:

Beam absolute position at H1.S1 for same ΔT and Φ variesBeam momentum varies for same RF settings (before measurement started)-20190112NPz ~ 6.272 MeV/c at MMMG-20190113NPz ~ 6.290 MeV/c at MMMG-20190114NPz ~ 6.263 MeV/c at MMMG

S11 seen by Bunch #1

single bunch operation

Kick slope on gun phase w.r.t. frequency detuning

single bunch operation, with LYSO at H1.S1

→ Overheating case gives most flattened kick slope on gun phase → consistent with simulations

Kick slope on T w.r.t. gun phase tuning

single bunch operation, with LYSO at H1.S1

→ Adjusting gun phase cannot kill the kick

Kick slope on T w.r.t. gun phase tuning

single bunch operation, with YAG at H1.S1

- $\Delta T \rightarrow$ frequency detuning, Δf
- Independent of gun phase the kick showing ~linear behavior over Δf on both LYSO and YAG screens at H1.S1

Momentum check

single bunch operation at different temperature SP

- → MMMG phase not changing for temperature SP range under consideration
- \rightarrow Beam momentum slightly varies and leveled off by adjusting the Gun SP^{±0.5}

Beam momentum for different temperature SP over [MMMG-10 MMMG+10]

Bunch train operation

Pz along bunch train for [MMMG-10 MMMG+10], "overcooling" case, train #2

 Φ [deg]

Kick slope on T w.r.t. gun phase tuning, "overcooling" case

Pz along bunch train for [MMMG-10 MMMG+10], "overheating" case, train #1

Kick slope on T w.r.t. gun phase tuning, "overheating" case

Discussion

vs. bunch charge

Kick along the bunch train vs. bunch charge

- **1.** Bunch position change (Δr) on H1.S1 (both YAG and LYSO) observed for both single bunch operation and bunch train operation (individual bunches along the train)
- 2. Kick characteristics seem consistent with previous findings
 - Δr vs. Φ (gun phase) for different T (temperature)
 - Δr vs. T for different Φ
- **3. Beam loading** effect observable (now up to 500pC)
 - seems not significant on the kick along the train
- **4. Remaining issue:** one of three train orbit measurements showed inconsistent kick strength than others; reason unclear