Virtual Pepper-Pot Experiment: method status and filters

Georgi Georgiev, December 11th 2018

Contents

- Introduction to VPP
- Image processing
 - Filter comparison
- Fitting
- Phase space
 - Emittance
- Conclusion

Virtual pepper pot

- Pepper pot mask
 - 4D transverse beam matrix
 - 4D phase space and emittance
 - Transverse correlations
- Reasons
 - Emittance optimization
 - Asymmetry compensation
 - Simulation model
 - Studies of the cause

"The 4D beam phase space information is extremely important for the characterization of nonround beams."

D. Marx et. al., DOI: 10.1103/PhysRevAccelBeams.21.102802

$$\varepsilon_{tr}^{4} = \begin{vmatrix} \langle xx \rangle & \langle xpx \rangle & \langle xy \rangle & \langle xpy \rangle \\ \langle xpx \rangle & \langle pxpx \rangle & \langle ypx \rangle & \langle pxpy \rangle \\ \langle xy \rangle & \langle ypx \rangle & \langle yy \rangle & \langle ypy \rangle \\ \langle xpy \rangle & \langle pxpy \rangle & \langle ypy \rangle & \langle pypy \rangle \end{vmatrix}$$

Further information:

M.Krasilnikov, PPS, 21.04.2009, On an estimation of x-y correlation from slit scans

		~µ	m	
		4	→	
•		×.		•
•		e.		•
•		÷.		•
-				•
-				•

Courtesy: D. Marx et. al. DOI: 10.1103/PhysRevAccelBeams.21.102802

Virtual pepper pot

- Pepper pot mask
 - 4D transverse beam matrix
 - 4D phase space and emittance
 - Transverse correlations
- Reasons
 - Emittance optimization
 - Asymmetry compensation
 - Simulation model
 - Studies of the cause
- Virtual pepper pot at PITZ
 - Pepper pot mask \rightarrow difficult manufacture
 - Virtual pepper pot: from slit scan
 - X and Y scan beamlets crossing
 - Asymmetric beam and structures

"The 4D beam phase space information is extremely important for the characterization of nonround beams."

D. Marx et. al., DOI: 10.1103/PhysRevAccelBeams.21.102802

$$\varepsilon_{tr}^{4} = \begin{vmatrix} \langle xx \rangle & \langle xpx \rangle & \langle xy \rangle & \langle xpy \rangle \\ \langle xpx \rangle & \langle pxpx \rangle & \langle ypx \rangle & \langle pxpy \rangle \\ \langle xy \rangle & \langle ypx \rangle & \langle yy \rangle & \langle ypy \rangle \\ \langle xpy \rangle & \langle pxpy \rangle & \langle ypy \rangle & \langle pypy \rangle \end{vmatrix}$$

Further information:

M.Krasilnikov, PPS, 21.04.2009, On an estimation of x-y correlation from slit scans

VPP code layout

- Green \rightarrow (nearly) complete
- Yellow \rightarrow in development
- Gray \rightarrow not started

Further information:

M.Krasilnikov, PPS, 13.10.2011, Phase space reconstruction from the slit scan data

Methods for noise filtering (1)

- Motivation overall low SNR
 - Low beamlet charge
 - Small charge beam structures
 - Limited number of pulses
 - Camera gain electronic noise
 - Noise filtering preceding any analysis
- Three applicable filters selected
- General similarities
 - Utilize average (and RMS) images
 - Separate signal from background
 <s> = <v> sigma
 - Pixel-wise mask of interest (MOI)
 - Values outside of MOI to zero

Further information:

R.Niemczyk, PPS, 13.03.2018, Progress towards slice emittance measurements at PITZ

H.Huck, PPS, 12.04.2018, Image Filtering for PITZ

G. Vashchenko, A. Shapovalov, PPS, 10.01.2013, Image analysis in emcalc2

Methods for noise filtering (2)

- Emcalc
 - Widely used at DESY
 - Initial MOI from signal above 3 times background RMS image
 - 3 rounds of removing and restoring
 - L-shape or closest neighbors
- Holger Huck fs_t
 - Gaussian blurred image above
 fraction t of background RMS image
 - MOI from largest value area(s)
- SNR and median
 - Initial MOI from pixel-wise SNR
 - Median filter on MOI
 - Salt-and-pepper noise removal
 - Smoothing

Progress towards slice emittance measurements at PITZ

H.Huck, PPS, 12.04.2018, Image Filtering for PITZ

G. Vashchenko, A. Shapovalov, PPS, 10.01.2013, Image analysis in emcalc2

Fastscan filtering results (1)

Further information:

L.Staykov, PPS, 10.06.2008,

SoP / total charge

- Fastscan scan method •
 - Take many background images 1.
 - 2. Move slit at constant velocity
 - Capture video of screen 3.
 - Single frame for each slit position
 - Quick measurement, but no averaging
- H.H. filters are **upper envelope** ٠
- Emcalc with closest neighbors is **lower envelope** .
- The rest in between ٠
 - Odd shape features preserved in all .
 - SNR>1 filter and Emcalc with L-shape overlap ٠
 - At SNR>0 no difference between 5x5 and 15x15 median

Fastscan filtering results (2)

Position and size

Visible noise caused spikes, outer region in noise dominated. SNR>1 filter outperforms Emcalc filter.

Fastscan filtering results (3)

Position close-up

X-ray filter was not applied – needed for f2_0.5.

Solenoid scan filtering results (1)

SoP / total charge

- Change main solenoid current and focusing
 - Significant changes in beam size
 - Significant changes in peak intensity
 - Beam position does not change
 - Integrated beam current does not change
 Filters must preserve summed charge and intensity!
- f2_0.5 is upper envelope
 - Preserves most charge
 - Not end-to-end
- Emcalc N (and SNR>1 filter) is **lower envelope**
 - Worst charge preservation
- Single image strange results (next slide)
 - Few filters **not influenced**

Solenoid scan filtering results (2)

SoP / total charge

- Change main solenoid current and focusing
 - Significant changes in beam size
 - Significant changes in peak intensity
 - Beam position does not change
 - Integrated beam current does not change
 Filters must preserve summed charge and intensity!
- f2_0.5 is **upper envelope**
 - Preserves most charge
 - Not end-to-end
- Emcalc N (and SNR>1 filter) is **lower envelope**
 - Worst charge preservation
- Single image strange results (next slide)
 - Few filters not influenced

With square MOI before filtering

More noise included in larger area? Noise subtraction underestimation.?

Solenoid scan filtering results (3)

Momentary edge glow

Mask of interest must be applied before automated MOI from each filter!

Solenoid scan filtering results (4)

Position and size

SNR>1 filter does not outperform Emcalc filter.

R.N. scan filtering results (1)

SoP / total charge

- Raffael Niemczyk scan procedure
 - Currently in development
 - Full beam MOI included
 - At each slit position
 - 1. Take 10 images with beam
 - 2. Take 10 background images
 - Slow measurement, but averaging possible
 - Data from TDS slit scan
- H.H. filters are upper envelope
- SNR>1 filter is lower envelope
 - Single odd drop, unknown cause

R.N. scan filtering results (2)

Position and size

No visible noise spikes. Consistent performance about end to end.

Noise filters summary

- General MOI must be applied before noise filter
 - Automatic MOI from filter on full beam (when available)
- Averaging of images: **important**
- Filter performance depends on experiment
 - H. Huck fs_t filter more sensitive, comparably robust
 - Most suitable for small low intensity beamlets
 - Similar performance of SNR>1 with 5x5 median and Emcalc
 - SNR>1 with median more robust
- Further study
 - More data sets
 - Different parameters
 - Replacing median filter

Fitting

X and Y positions matching of EMSY screen, slit position and mean beam center

- Slice charge ~ EMSY projection at slit position
- Expected: SoP matches EMSY projection
- Slit position offset and intensity scale difference
- Charge cut
 - Weak signal not detected
 - Tails cut or zero level difference
- Simplex (only for X) or particle swarm optimization

Filter	Tail cut (X / Y) %	Level cut (X / Y) %
f2_0.5	0.03 / 1.96	0.97 / 15.8
f4_1	0.97 / 1.76	8.51 / 14.7
SNR > 0 & 5x5 median	2.47 / 2.23	13.9 / 18.0
SNR > 1 & 5x5 median	5.00 / 2.03	19.1 / 17.7
emcalc L-shape	5.72 / 2.61	20.8 / 20.7
emcalc neighbours	7.58 / 2.47	25.8 / 19.9

Phase space reconstruction

X and Y phase spaces

- Slit position beamlet position
- Beamlet projection angular distribution
- Matching of position and angle

Further information:

M.Krasilnikov, PPS, 13.10.2011, Phase space reconstruction from the slit scan data

Emcalc3 reference values ε_{nonscaled}=0.780 [mm mrad] ε_{scaled}=1.130 [mm mrad]

Filter Preliminary	Nonscaled emittance X [mm mrad]
f2_0.5	1.7180
f4_1	1.2315
SNR > 0 & 5x5 median	1.1183
SNR > 1 & 5x5 median	0.8149
emcalc L-shape	0.8229
emcalc neighbours	0.6840

Analogically for Y-axis

Y phase space: Work in progress

Δx

Conclusion

- Virtual pepper pot experiment for PITZ
 - 4D transverse beam studies
 - Slit scan measurements
- Status
 - Phase space reconstruction (only X at the moment)
 - Next steps
 - X-Y beamlets crossing
 - 4D transverse beam matrix
 - 4D transverse emittance
- Noise filtering
 - Sensitivity against robustness
 - H.Huck filter most suitable
 - Further studies

Thank you!

Acknolwedgements

R. Niemczyk for details on his scan method and early data

M.Krasilnikov. for solenoid scan idea

Signal to noise ration in SNR filter

Backup slide

<s> = <v> -

<s'> = <v> - <b'>

SNR = <s> / ≈ <s'> / <b'> = (<v> - <b'>) / <b'>

 $MOI = (\langle v \rangle - (SNR+1) * \langle b' \rangle) / \langle b' \rangle > 0$