Preliminary RF design studies of 1300 MHz CW buncher

Shankar Lal PITZ Physics Seminar DESY-Zeuthen

Outline

➢Basic design : Literature survey

≻RF design of two cell buncher

Multipacting study

≻Thermal design

≻RF power coupler design

≻Outlook

1300 MHz buncher : Literature survey

Single cell 1300 GHz buncher cavity: Cornell/Jlab ERL

Proceedings of the 2003 Particle Accelerator Conference

BUNCHER CAVITY FOR ERL

V. Veshcherevich[†] and S. Belomestnykh Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, NY 14853, USA

Inner shape of buncher cavity

Table 1 Energy of electrons, E500 keV Velocity of electrons, v/c 0.863 Beam current. I_0 100 mA Resonance frequency, f1300 MHz 20.000 Q Shunt impedance, $R = V^2/2P$ 2.1 MOhm Nominal operating voltage, V120 kV Maximum accelerating voltage, $V_{\rm m}$ 200 kV Maximum dissipating power, $P_{\rm m}$ 9.6 kW Peak surface electric field, E_{p} 8.8 MV/m Cavity detuning by beam current, ψ 73°

 $4.2 M\Omega$

Accelerating voltage of 200 kV @P~ 9.6 kW

1300 MHz buncher : Literature servey

Single cell 1300 GHz buncher cavity: KEK design

THPRI045

Proceedings of IPAC2014, Dresden, Germany

DEVELOPMENT OF A 1.3-GHZ BUNCHER CAVITY FOR THE COMPACT ERL

T. Takahashi[#], Y. Honda, T. Miura, T. Miyajima, H. Sakai, S. Sakanaka, K. Shinoe, T. Uchiyama,

K. Umemori, M. Yamamoto

High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801, Japan

Inner shape of buncher cavity

- Accelerating voltage of 130 kV P~ 3.17 kW
- Accelerating voltage of 193 kV @ 7 kW
- Accelerating voltage ~200kV @ 7.5 kW

Table 1: The Principal Parameters of the Buncher Cavity

(Shunt impedance is defined by $R_{\rm sh} = (V_{\rm c})^2 / P_{\rm c}$)

Resonant frequency	1.300 GHz
$R_{\rm sh}/Q$ (for $\beta=v/c=1$)	232.8 Ω (calc.)
$R_{\rm sh}/Q$ (for $\beta = v/c = 0.863$)	194.7 Ω (calc.)
$R_{\rm sh}/Q$ (for $\beta = v/c = 0.824$)	181.3 Ω (calc.)
Shunt impedance R_{sh} (for $\beta = v/c=1$)	5.33 MΩ
Unloaded-Q Q_0	22900 (meas.)
External-Q of input coupler Q_{ex}	21100 (meas.)
Coupling of input coupler	1.08 (meas.)
Maximum cavity voltage (V_c) for usual operation	130 kV
Dissipated power in cavity P _c	3.17 kW
$(at V_c = 130 \text{ kV})$	
Maximum cavity voltage during conditioning (at $P_c=7$ kW)	193 kV

At the maximum rf voltage of 130 kV, the maximum power density on the inner wall is 6.9 W/cm², while the maximum electric field is 4.8 MV/m. These values are well within our experience of the PF accelerating cavity.

High power RF conditioned up to 7kW

1300 MHz buncher : Literature servey

Two-cell 1300 GHz buncher cavity for APEX: LBNL design

THPRI066

Proceedings of IPAC2014, Dresden, Germany

DESIGN OF A 1.3 GHZ TWO-CELL BUNCHER FOR APEX*

H. Qian[#], K. Baptiste, J. Doyle, D. Filippetto, S.Kwiatkowski, C.F. Papadopoulos, D. Patino, F. Sannibale, J. Staples, S. Virostek, R. Wells, LBNL, Berkeley, CA 94720, USA

2D cavity profile

Accelerating voltage of 240 kV P~ 7.4 kW

Accelerating voltage of 400 kV @ 20.5 kW

Table 1: Beam and Buncher Cavity Parameters*

	Units	Values
Beam energy	keV	750
Beam current	mA	0.3
Mode separation	MHz	0.88
PI mode frequency	MHz	1300
PI mode Q ₀		2.35×10^4
Shunt impedance	ΜΩ	7.8
Nominal cavity voltage	kV	240
Dissipating power	kW	7.4
Peak surface electric field	MV/m	4.7
Peak surface power density	W/cm ²	5.8

* Parameters are calculated assuming 45 C wall temp.

Compared with a single cell design, the cavity power dissipation decreased from 15 kW to 7.4 kW, so the cavity can be powered by a 10 kW solid state amplifier, and both the RF source cost and the thermal power density are reduced.

1300 MHz buncher : comparison

Parameter	Cornell/Jlab	KEK	LBNL	DESY (proposed)
No. of cells	1	1	2	2 or 3
Frequency (MHz)	1300	1300	1300	1300
$R_{sh} = \frac{V^2}{P_c}$	4.2	5.33	7.8	
Nominal Acc. Voltage (kV)	200	130	240	400* (study underway)
Power dissipation (kW)	3.42	3.17	7.4	

Proposed PITZ/DESY design: KEK design (highest shunt impedance/cell) with multiple cells

Two - cell 1300 MHz pre-buncher

Geometrical parameters

- ➤ Cell length: 105.1 mm
- ➤ Accelerating gap : 68 mm (T=0.8)
- ➢ Beam aperture: 38 mm
- ➢ R1=50 mm, R2=R3=4 mm
- ➤ Cavity radius : 89.449 mm

RF parameters π mode			
Parameter	value		
f (MHz)	1300.01		
Q	24389		
R/Q	464.27		
R (MΩ)	11.32		
P (for 200 kV)	5.08 kW		
P (for 400 kV)	14.15 kW		
f_{π} - f_0 (MHz)	0.2		

Parametric view of cavity

Electric field array plot for π mode

Electric field profile along cavity length for π mode

Remarks: Mode separation is very small (0.2 MHz) need to increase.

Two-cell 1300 MHz pre-buncher design : issues

Mode mixing: excitation of '0' mode when RF feed for π mode

$$A \rightarrow 1/\sqrt{1+Q^2\left(rac{f}{f_r}-rac{f_r}{f}
ight)^2}$$

Variation in amplitude of a driven harmonic oscillator with frequency

Typical frequency spectrum of two coupled cavities with quality factor of 20000 and mode separation = 0.9MHz

▶ '0' mode amplitude at π mode frequency: ~30%@ 0.2 MHz and ~3%@ 0.9 MHz

> For critical coupling ($\beta_{RF}=1$) $Q_L=Q_0/2$

• '0' mode amplitude at π mode frequency :~7% for mode separation ~ 0.9 MHz

Increase of mode separation

Increase the ID of inter-cell coupling iris (2R_b): Reduce R_{sh}

Variation in shunt impedance and mode separation with inner radius of inter-cell coupling iris

Variation in amplitude of a driven harmonic oscillator with frequency

- ➤ Mode separation increased from 0.2 MHz to 1.1 MHz for R_b increased from 19 to 24.5 mm
- > Shunt impedance reduced from 11.32 to 9.6 M Ω for R_b increased from 19 to 24.5 mm
- > For mode separation of > 0.9 MHz: No much reduction in '0' mode field
- Mode mixing should not be a problem for mode separation > 0.9 MHz

Two-cell 1300 MHz pre-buncher design : issues

- Minimum wall thickness between two cavities is only
 5.1 mm which is very small need to be increased.
- \succ Can be increased by reducing radius R_1
- Minimum wall thickness ~10 mm (also depends upon thermal design): R₁=47 mm

Re-optimization of geometrical dimensions to with R_1 = 47 mm and mode inter-cell coupling iris = 49 mm

Two-cell 1300 MHz pre-buncher: First design

RF parameters of π mode		
Parameter	Value	
f(MHz)	1300.01	
Q	24452	
R (MΩ)	9.35	
$f_{\pi}f_0$ (MHz)	0.96	
P (for 400 kV)	17.11 kW	
P (for 240 kV)	6.16 kW	
E _{peak} /E _{z0}	2.02	
Peak surface power	5.62	
density (W/cm ²)	@ 400 kV	

Electric field array plot for π mode

Pc with accelerating voltage

- ightarrow R_{sh} is ~ 20 % higher compare to LBNL design (7.8 M Ω)
- ➢ Mode separation ~ 0.96 MHz

▶ RF power required to generate nominal cavity voltage (total) of 400 kV is ~ 16 kW

Two-cell 1300 MHz pre-buncher: Geometry

		(
1			V/m (log)
			3.04e+07 +
e e e e e e e e e e e e e e e e e e e	(2.48+07
)(1.47e+07
· · · · · · · · · · · · · · · · · · ·	v		1.13e+07
			8.49e+06
	W <u>u</u>		6.25e+06
		A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.	4.438+06
	4	1	1.76e+06
×			7.87e+05
	****	******	0 -
an A			Č S1
	<************	V	
	X		

Geometrical parameters			
Parameter	Value		
R_{c} (mm)	91.207		
R ₁ (mm)	47		
$R_2 (mm)$	4		
R ₃ (mm)	4		
R _b (mm)	24.5		
G (mm)	68		
L (mm)	105.1		

Multipacting study

Multipacting simulations using CST PIC solver

- 1/8th model simulated for minimize simulation time (1/8th model is made of copper with SEE and rest without SEE)
- > Initial particles : ~ 100 to minimize the simulation time
- ➢ Particle emission time: ~ 1 ns (1RF period~ 0.76 ns) to cover all phases of RF
- ➢ Energy : 2-6 eV and angular spread ~90° *
- EM fields imported from Eigen mode solver
- ➢ Simulation time 100 ns (~ 130 RF periods)

1/8th model (yellow) of two cell buncher cavity used for MP study

Particle emission surface (red)

*Berrutti et al. "Multipacting simulations of SSR2cavity at FNAL", FERMILAB-Conf-13-404-TD

Benchmarking of simulation procedure (coaxial cable)

Nuclear Instruments and Methods in Physics Research A 735 (2014) 596-601

Prediction and suppression of two-point 1st order multipacting

Z. Zheng^{a,b,*}, A. Facco^{a,c}, Z. Liu^a, J. Popielarski^a, K. Saito^a, J. Wei^a, Y. Zhang^a

^a Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA
^b Tsinghua University of Beijing, Beijing 100084, China

^c Isingnua University of Beijing, Beijing 100084, China
^c INFN – Laboratori Nazionali di Legnaro, Padova, Italy

Resonance condition for MP in Coaxial cable

$$E_r = \frac{(r_2 - r_1)\omega^2 m}{(2n-1)\pi e}$$

 r_1 and r_2 : Radius of inner and outer conductor $\omega = \text{RF}$ angular frequency($= 2\pi f$) m = electron mass, e = electron charge n = order of MP

For *f* =1298.5 MHz Two point first order MP : E_r=9.145MV/m

Benchmarking of simulation procedure (coaxial cable)

- ➤ EM fields imported from CSTMWS Eigen mode solver
- > Field scaled to $E_r=9.156 \text{ MV/m}$
- ➤ Two point 1st order MP observed
- > Simulation agree with analytical prediction ($E_r=9.145$ MV/m)

Particle view at 40 ns

Two-cell 1300 MHz pre-buncher: Multipacting study

- > No MP for accelerating field gradient < 7 MV/m (total gap voltage =1.4 MV)
- Operating accelerating gradient Ez =1.95 MV/m (total cavity voltage 410 kV)

Particles with time

Growth rate with accelerating field

Particle distribution for Ez = 1.95 MV/m

Multipacting study at higher field

- MP study at Ez~ 9 MV/m (total gap voltage 1.89 MV)
- Strong MP observed after 7.5 MV/m \succ

Number of particle with time for Ez = 7.5 MV/m

Number of Secondary Electrons with time

d

Particle distribution for Ez = 7.5 MV/m

Two-cell 1300 MHz pre-buncher: Thermal study

- CST Thermal solver (steady state) is used
- RF field imported from Eigen mode solver
- ➢ Oblong cooling channels near nose cone (initial design) with heat transfer coefficient

Surface loss density

Cooling channels geometry

- \blacktriangleright Cooling channel : width = 8 mm, height = 30 mm
- ➢ 35 mm way from beam port ID
- ➢ Heat transfer coefficient : 2 W/cm²K^{*}
- ➢ Cooling water temperature : 30°C

*H.Qian et al. "Design of a 1.3 GHz two-cell buncher for APEX, IPAC 2014.

Two-cell 1300 MHz pre-buncher: Thermal study

➤ Wall thickness at the end of cooling pipe is ~4 mm

RF power coupler: Options

APEX design

- Coaxial loop coupler
- \geq 2 couplers to each cavity
- > 4 kW power to each port
- \succ 1-5/8 EIA 50 Ω coaxial line

KEK design

- Coaxial loop coupler
- Cylindrical ceramic window
- Coaxial-to-waveguide transformer

Other possibility

- On-axis PITZ type coupler
- Rectangular ceramic window

Comparison of different RF power coupler schemes

Coupler type	LBNL	KEK	PITZ
RF Coupling type	Magnetic (Loop)	Magnetic (Loop)	Electric (Antenna)
Number of couplers	4	2	1
Tuning of coupling	By rotation of loop	By rotation of loop	Moving antenna ??
RF windows	4 (cylindrical)	2(cylindrical)	1 (rectangular)
RF coupler geometry	Coaxial 20Ω to 50Ω transition	Coaxial-to- waveguide transformer	Coaxial-to- waveguide transformer
High power test	4 kW	Tested up to 7 kW	Tested up ~10 MW
Additional requirement	RF phase between 4 ports	RF phase between 2 ports	

Two-cell 1300 MHz pre-buncher: RF power coupler

Follow APEX design

- CSTMWS Frequency Domain Solver
- > Two ports (diagonally opposite) each cavity
- One pickup & one pumping port
- Each port ~1/4 power

Two-cell 1300 MHz pre-buncher: RF power coupler

 VSWR= 0.7 for parameters as per LBNL design

Optimization under way

S11 for port 1

Summary

- First RF design of two-cell 1300 MHz buncher is carried out
- Proposed design has ~ 20 % higher shunt impedance compared to LBNL design
- Simulations predict no MP for operating voltage of 400 kV
- ➤ LBNL based loop type RF power coupler is designed. Each cavity has two RF power couplers. Each coupler need to feed RF power of ~ 4 kW for desired operating voltage of 400 kV.
- Thermal simulations predict temperature raise of ~ 20°C near nose cone.

Out look

- Study of variation in RF parameters with geometrical dimensions
- Study other options of RF power coupling like on-axis PITZ type coupler and compare the with present design.
- Design of RF pickup loop
- Study of Multipacting in RF power coupler
- Design of RF tuners
- RF design of 3 cell: higher shunt impedance (~12 MΩ) lower RF power (~12 kW for 400 kW)

Thank you for your attention

If you are still alive...

Give your feedback and comments

Two-cell 1300 MHz pre-buncher: Multipacting study

Particle distribution with time for Ez=1.95 MV/m (total gap voltage 205 kV)

Particle at 50 ns

Particle at end of emission (1ns)

Particle at end of simulation (100 ns)

Single-cell 1300 MHz pre-buncher

Parametric model based upon KEK design

