My introduction and research activities

Shankar Lal

Free Electron Laser and Utilization Section Materials Sciences Group Raja Ramanna Centre for Advanced Technology Indore, India

Present: Postdoc at PITZ, DESY Administrative Supervisor: Dr. Frank Stephan Technical Supervisor: Dr. Qian Houjun

Outline :

- > Introduction: education and research experience
- > Ph.D. work
- Design and development of RF accelerating structures at RRCAT
- ➢ Installation and commissioning of IR-FEL at RRCAT

> Summary

Educational and professional qualifications

- M.Sc. Physics (Micro-Wave electronics)-1999, Rajasthan university, Jaipur, Rajasthan, India
- One year orientation course on Lasers and Accelerators 2001-02, RRCAT, Indore
- Joined Free Electron Laser Lab at RRCAT in 2002 as staff member
- Ph. D.(Physics) -2015: Design & Development of S-band photocathode RF gun

Professional skills and experience

- ≻RF design of accelerating structures: SUPERFISH and CST MWS
- Design and development of RF power couplers
- >Development, tuning and RF characterization of accelerating structures
- >High power testing of accelerating structures
- >Study of beam loading and compensation in RF accelerating structures
- >Other to making accelerators to work:
 - Development of high power microwave lines
 - Vacuum system development
 - Handling beam transport systems with electron beam diagnostics

Ph.D. dissertation

'Design, Construction and Experimental Studies with an S-band Photoinjector'

Aim of dissertation

- Development of a 1.6 cell BNL/SLAC/UCLA type photocathode RF gun
- (i)To study and understand RF design & beam dynamics related issues
- (ii) To identify critical issues related to the development and tuning of photocathode RF guns, and to perform analytical/experimental studies to address these issues
- (iii) In-house development, tuning and characterization of a photocathode RF gun for possible future use as an injector for a light source

RF Design Study

Basic geometry: **SUPERFISH** Final geometry with ports for RF, Vacuum, laser and tuning: **CSTMWS**

z (mm) Variation of on-axis Ez along length

Smith Chart showing waveguide to cavity coupling

Field array plot predicted by SUPERFISH

3D view of photocathode RF gun

Beam dynamics study

Using beam dynamics code PARMELA

Photocathode RF gun development

Prototyping: To qualify simulations and understand tuning and establish a machining procedure

Aluminum prototype (AGUN)

- ➢ To save material and machining cost.
- > To understand agreement of experimental results with simulations.

AGUN components, frequency spectrum and bead-pull for the un-tuned photocathode gun

RF parameters far from final parameters: Require tuning

Aluminum prototype (AGUN)

Aluminum prototype is tuned by iterative cut-measure technique Experimental observations:

- RF parameters of gun (f_{\pi}, e_{b} \text{ and } \beta_{\pi}) are
- 1) Interdependent: hence need to be tuned simultaneously.
- 2) Dependent on independent cell RF parameters (f_h , f_f , β_f)

An understanding of **interdependence** of RF parameters $(\mathbf{f}_{\pi}, \mathbf{e}_{b}, \beta_{\pi})$ and their **dependence** on independent cell RF parameters $(\mathbf{f}_{h}, \mathbf{f}_{f}, \beta_{f})$ can simply the tuning by enabling to predict independent cell RF parameters for desired gun RF parameters

Analytical study of PC gun

LCR equivalent model: Two step tuning procedure

Two Step tuning procedure

1. Tune f_h to predicted value

2.Tune $f_{\rm f}$ and $\beta_{\rm f}$ to desired values

Coupled gun gives desired f_{π} , e_b and β_{π}

Only one cell needs to be tuned at time

Ref: A new two-step tuning procedure for a photocathode gun Shankar Lal, K.K.Pant, S. Krishnagopal, NIM A 592 (2008)

Verification of tuning procedure through experiments

Experimental results agree very well with predictions

Scaling law to predict geometrical dimensions of gun

Effect of vacuum f(vacuum) = f(air) + 0.8 MHz

Effect of brazing f_f (brazed) = f_f (un-brazed) + 13kHz/B(μ m) β_f (brazed) =1.17× β_f (un-brazed)

Two photocathode guns successfully tuned

Ref : A novel scaling law relating the geometrical dimensions of a photocathode RF gun to its RF properties, **Shankar Lal**, K. K. Pant and S. Krishnagopal, **RSI 82, 123304 (2011).**

Photocathode RF gun development

- Machining
- Brazing
- RF tuning and characterization
- Vacuum testing

Brazed gun

Gun components

Gun structure

Ref: Ajay Kak, P.K. Kulshreshtha, **Shankar Lal** in Proceedings of InPAC 09. Ajay Kak... **Shankar Lal** et al, Journal of Physics: Conference Series 390 (2012) 012025.

RF characterization: Cold test measurements

Frequency spectrum of tuned gun

Smith chart of tuned gun

Design and development of other accelerating structures

476 MHz SHPB

S-band pre-buncher

7-cell S-band accelerating buncher

4-cell S-band accelerating buncher

PWT linac

PWT disk array

Plan Wave Transformer (PWT) linac: 4, 8, 12 and 20-cell

Disk washer loaded

SW wave π mode

High inter-cell coupling

RF design: CST

Field array plot in 4-cell PWT linac

PWT dis	sk array
---------	----------

RF parameters		
f_{π} (MHz)	2856	
Q ₀	~ 20000	
$R (M\Omega/m)$	65	

PWT linac tank and reservoir

4 -and 7-cell S- band accelerating Buncher

- Disk loaded structure
- First 4-cells of variable length
- ➢ Last three cells of fix length

4-cell accelerating buncher during vacuum testing

Field array plot in 4-cell S-band accelerating buncher

7-cell accelerating buncher during vacuum testing

476 MHz Sub-Harmonic Pre-Buncher (SHPB)

Re-entrant design
SS (low Q ~ 2000)
R/Q ~ 170

2D model of pre-buncher cavity

On axis accelerating field profile

View of one half of pre-buncher and full assembly

Tuning and RF characterization of RF accelerating structures

Frequency tuning	Τ	uning of transmission line to cavity coupling
476 MHz SHPB: cut-measure technique & tuners		176 MHz SHPR. Loop size
S-band bunchers: plastic deformation (push & pull)		and rotation
Plan Wave Transformer (PWT) linac : vary structure length using gaskets of different thickness		S-band bunchers & PWT: varying RF coupling slot length

RF characterization : VNA in reflection mode

- \succ Smith Chart: Frequency, quality factor, β
- > Bead-pull: on-axis electric field profile, R_{sh}/Q

On-axis field profile in 7-cell S-band buncher before and after tuning ;

Ref: Shankar Lal et al. in proceedings of IPAC10, Kyoto, Japan, p. 1713. Shankar Lal and K.K.Pant, NIMA 889 (2018), 57-62

Design and development of RF power couplers

Hole/Slot coupling

- Applied Gao's scaling law to predict slot sizes for different structures
- Good agreement observed for PWT linac (good inter-cell coupling
- Modified for 1.6 cell photocathode gun and 4-cell/7-cell buncher structures with poor inter-cell coupling

Ref: S. Krishnagopal, **Shankar Lal** et al. EPAC08, p.2734 **Shankar Lal**, et al., IPAC 10, 1713.

Loop coupling

- ➢ Modified Faraday's law for predicting loop size for desired value of β > 1 with good accuracy
- Included effect of loop inductance
- ➤Coupler loops developed for a 476 MHz sub-harmonic pre-buncher and successfully tested at high powers
- Ref : Shankar Lal and K.K.Pant, "Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient", RSI 87, 083308 (2016)

PWT linac: High power RF testing

≻High power RF conditioning

➢High power RF characterization: by analyzing transient response of reflected RF power

Study of beam loading and scheme for compensation

$$\frac{t_1(optimum)}{\tau} = \log_e \left(2\sqrt{\frac{\beta P_{in}}{R_{sh}}}\right) + \log_e \left(\frac{t_b}{q}\right)$$
$$V_{eff} = 2\sqrt{\frac{\beta R_{sh} P_{in}}{1+\beta}} \left(1 - e^{-\frac{t_1(optimum)}{\tau}}\right) + \frac{1}{2}V_0$$

Ref: Shankar Lal et.al, IPAC 10, 1713.

Ref : Shankar Lal, K. K. Pant, RSI 85, 123302 (2014)

Participation in installation, commissioning and regular operation of injector system for FEL at RRCAT

IR-FEL Design parameters		Electron beam & undulator design parameters	
Wavelength	12.5 - 50µm	Electron	15-25 MeV, < 0.5%,
Pulse structure	10 ps @ 29.75 MHz	beam	>30 A, 30 mm mrad
	for 10 μs @ 1-10 Hz	Undulator	NdFeb, 50mm, 2.5 m
IR power	power $2 \text{ MW} (10 \text{ ps})/30 \text{ mW}$		gap =25-40mm, K =1.2-0.5

IR-FEL at RRCAT

Layout of IR-FEL beam line

IR-FEL tunnel (5 m x 3.5 m x 60 m long) with components installed inside in tunnel

IR-FEL commissioning Experiments: Stage 1

- Initial trials started: Jan 2016
- Electron beam pulse:1µs
- Without down stream mirror
- First light observed : Feb 2016

Electron beam signals at different locations Bolometer signals

IR parameters		
wavelength	37 µm	
IR power	~3mW (avg. 1µs) 10W (peak)	

IR-FEL commissioning Experiments: Stage 2

- Electron beam pulse width :5µs pulse
- Optical cavity (down stream mirror) installed
- First signature of lasing observed : Nov. 2016
- Enhancement over spontaneous power: $\sim 10^5$

Typical bolometer signal with optical cavity length detuned

Typical bolometer signals showing a high degree of saturation with optical cavity tuned to design length

Electron beam parameters	
W(MeV)	~18
I (A)	~26 peak
Emittance	$\sim 40 \text{ mm mrad}$

IR parameters	
wavelength	34µm (calculated)
IR power	~500 mW (avg. 5µs) ~2 kW (peak 10ps)

Improvement in stability & flatness of RF is underway

Ref: K.K. Pant et. al, Current Science, Jan 2018

IR-FEL Commissioning Experiments: lasing day

Team members

New photocathode RF gun design and development Photocathode RF gun: 1.6 cell BNL/SLAC/UCLA type -III without physical tuners

Tuning by Plastic deformation

- Deform cavity wall locally
- Both direction (pull and push)

Status

- Tuned for pi mode 2856 MHz, FB ~1 and β_{RF} ~1.5
- ► RF conditioned @ 6.5 MW, 4µs $E_{cathode} = \sim 110 \text{ MV/m}$

Summary

I have some experience in :

- RF design, development and high power testing of RF accelerating structures.
- Tuning of RF accelerating structures (resonance frequency, field uniformity and RF power coupling).
- Beam loading effect and its compensation.
- Installation and commissioning of FEL injector system at RRCAT (high power RF transport line, vacuum testing, RF conditioning etc.)
- Hope my experience may be useful at PITZ (design RF accelerating structures and experiments)

Thanks