## **Momentum measurement at LEDA**

- Simulation using ASTRA
- Experimental measurement
- Comparisons
- Discussions



Supasin Sukara BSc Student of Chiang Mai University. 3 months research at PITZ, DESY



### INTRODUCTION

- Mikhail proposes some options for rearrange the Low energy section with a TDS.
- > The momentum measurement at LEDA is the first thing to study.







### **PITZ3 Beamline**

The scope of this study is in the Low Energy Section

from cathode to LEDA (Low Energy Dispersive Arm)



#### **ASTRA Simulation of Momentum measurement at LEDA**

#### Layout for ASTRA simulation \*not to be scaled\*



#### **ASTRA Simulation of Momentum measurement at LEDA**

Dipole fields distribution at LEDA was desired by Juliane Rönsch, shown in her PhD Thesis, 2009



Figure 4.16: Spermatical layout of the modified dipole spectrometer.



#### **ASTRA Simulation of Momentum measurement at LEDA**

- Dipole fields distribution at LEDA was constructed by 'DIPOLE namelist' in ASTRA
- > Bending radius = 150 mm



Dipole distribution from J. Rönsch's PhD Thesis, 2009



Dipole distribution from ASTRA



#### **BEAM DISTRIBUTION**

- Initial beam distribution in ASTRA corresponding to the experiment (11.06.2018)
  - Transverse beamsize,  $\sigma_x$ ,  $\sigma_y = 0.30 \text{ mm}$  as radial uniform distribution.
  - Temporal profile, FWHM = 4 ps → σ<sub>t</sub> = 1.698 ps as Gaussian distribution. (laser spot size of 1.2 mm)
  - Bunch Charge, Q = 100 pC



#### **BEAM DISTRIBUTION**

> Acceleration in ASTRA corresponding to the experiment (11.06.2018)

- From experiment, P<sub>gun</sub> = 5.6 MW was used for momentum measurement.
- In ASTRA, RF<sub>gun</sub> gradient, Emax = 52.5 MV/m (calibrated from this graph from PITZ logbook.)





#### **Momentum Measurement in ASTRA**

Transverse beam distribution at DISP.Scr1 must be rotated vertically for 60°, calculated by this equation



#### **Momentum Measurement in ASTRA**

#### Transverse beam profile at DISP.Scr1 before and after 60° rotation





### **Momentum Measurement in ASTRA**

- Calibration curve from vertical transverse distribution to momentum
- From simulation using bending radius = 150 mm
  - Used maximum magnetic field = 0.1231 T
- Calibrated by simulation single e- trough Dipole





### **ASTRA SIMULATION**

- Space charge calculation is needed for including in simulation
- Cathode to LOW.Scr1 section

Simulated with cylindrical symmetric space charge calculation including image charge

LOW.Scr1 to DISP.Scr1 section has 3 options of simulation

- 1. Simulated without space charge calculation
- 2. Simulated with cylindrical space charge calculation
- 3. Simulated with 3D space charge calculation





#### **SOLENOID SCAN IN ASTRA**

> Vary the solenoid field (Bmax) for the best focus on the screen



### PROCEDURE

- Measure the mean momentum and rms momentum (energy spread)
- Momentum distribution can be measured from transverse distribution at screen after dipole (DISP.Scr1)



SP Phase Gun [deg]

### RESULT

Momentum measurement at LEDA by experiment for 'Pgun = 5.6 MW' and simulation for 'maxE = -52.5 MV/m'



#### **Beam Profile at DISP.Scr1**

> They are on screen with dimension of  $x^*y = 20^*40$  mm

Bm = -0.223 T



From measurement





30

0.02

30

w/ cylindrical space charge calculation



w/ 3D space charge calculation



#### **Comparison of Momentum distribution at MMMG phase**



#### PZ measurement vs ASTRA simulation for 52.5 MV @ MMMG Bmax0.22263





Momentum measurement at I DA by experiment for 'Pgun = 5.6 MW' and simulation for 'maxE = 52.5 MV/m'



#### **Comparison of Momentum distribution at off MMMG phase**









Momentum measurement at LEDA by experiment for 'Pgun = 5.6 MW' and simulation for 'maxE = 52.5 MV/m'



#### **Comparison of Momentum distribution at off MMMG phase**



0

5.3

5.35

5.4

5.45

5.5

5.55

pz (MeV/c)

5.65

5.6

5.7

5.75



<pz> ASTRA w/ 3D spo

ms pz ASTRA w/o sp

rms pz ASTRA w/ 3D sp

ms pz ASTRA w/ cylind spo

coz> Measure

rms pz measure - Ecath

ASTRA w/ cylind sp

keV/c)

20

Supasin Sukara | PITZ physics Seminar | 05.07.2018 | Page 19

Gun Phase (deg)

20

5.3

5.25

5.2

5.15

5.1

#### The pz distribution at each phase from ASTRA with 3D spc





#### CONCLUSION

#### **Conclusions of ASTRA simulation with 3 options**

- Simulation without space charge calculation after Low.scr1 can provide the momentum distribution at LEDA same as the momentum distribution at Low.scr1
- > Cylindrical space charge calculation is not work for momentum measurement at LEDA. The distributions are too different from experiment.
- > 3D space charge calculation is work but a little bit not accuracy. Some distributions have 2 peaks at same as the distribution from experiment.







# THANK YOU For Your Attention.



