PITZ Laser Beamline Upgrade

Variable Magnification; transport of green light

Matthias Gross Zeuthen, 31 May 2018

DESY.

Motivation

Flexible beam transport from various Photocathode laser systems to accelerator tunnel

Beam transport Requirements (Laser system / transverse shape on photocathode)

MBI / flat top: **UV**; BSA with fixed laser magnification – current implementation 1. MBI / truncated Gaussian: **UV**; BSA with variable laser magnification 3. ELLA: **UV**; variable(?) laser magnification Pharos bypass: **UV**; BSA with fixed(?) laser magnification 4. Pharos 2nd harmonic: 5. **Green**; BSA with fixed(?) laser magnification MBI 2nd harmonic: **Green**; BSA with variable(?) laser magnification 6.

Restriced space, especially in the shaft: combine all beamlines?

- Turning mirrors and lenses: need special coating to handle both wavelengths (can be done with R>99%)
- Lenses: AR coating R<0.5% \rightarrow ok; focus length is a function of the wavelength \rightarrow check
 - Transmission in green for UV AR coated lens \approx 90% (pulse energy in green \approx 5x higher / \approx 3x higher after 5 lenses)

1) MBI / flat top (current setup)

Baseline

- No mirrors in simulation: Phase front errors etc. negligible
- Results:
 - Image quality: RMS spot radius of on-axis and off-axis beams
 - Magnification (ratio of image size to object size |IMA/OBJ| for offaxis beam)
 - From VC2 images: FWHM of laser beam at BSA: ≈3 mm with M≈10

2) MBI / truncated Gaussian

Add Galileian zoom telescope with 3 lenses (f: 500 mm -25 mm 500 mm)

	Magnificat ion	RMS radius 1	RMS radius 2
Current setup	9.8	<1 µm	<1 µm
Telescope config 1	10.0	<1 µm	<1 µm
Telescope config 2	5.0	<1 µm	2.0 μm
Telescope config 3	2.5	2.0 μm	7.5 μm
Telescope config 4	1.25	31 µm	60 µm

3/4) ELLA / Pharos Bypass

Same shaft beamline: last two lenses are identical

- Fixed telescope with optimized Magnification e.g. M = 1
 - \rightarrow Add one or two lenses on ELLA laser table

- OR
- Variable telescope with similar setup as on the MBI laser table (could get rid of first lens)

5) Pharos 2nd harmonic

Wavelength: 515 nm

- Comparison to baseline (258 nm) – only difference: first lens is moved by 8 cm
- Results:
 - Magnification is almost unchanged (9.84 to 9.64)
 - Image quality: RMS spot radius of on-axis and off-axis beams are the same, both <1μm
 - With two UV AR coated lenses in shaft the transmission to the BSA would be reduced by ≈20%

6) MBI 2nd harmonic

Optimize Galileian zoom telescope with 3 lenses (slight adjustment of positions)

	Magnificat ion	RMS radius 1	RMS radius 2
Current setup	9.6	<1 µm	<1 µm
Telescope config 1	10.0	<1 µm	<1 µm
Telescope config 2	5.0	<1 µm	2.0 μm
Telescope config 3	2.5	2.0 μm	7.9 µm
Telescope config 4	1.27	32 μm	60 µm

Image quality almost identical to 257 nm case

Moving Range of Lenses in Telescope

Requirement for moving stages

- In all cases: position of first lens is fixed
- Moving range for UV and green is almost identical
- Full range (M between 1.25 and 10)
 - L2(UV): 206 mm
 - L2(green): 219 mm
 - L2(total*): 279 mm
 - L3(UV): 180 mm
 - L3(green): 190 mm
 - L3(total): 300 mm
- Reduced range (M between 2.5 and 10)
 - L2(UV): 70 mm
 - L2(green): 76 mm
 - L2(total*): 143 mm
 - L3(UV): 80 mm
 - L3(green): 52 mm
 - L3(total): 148 mm

*one setup for both wavelengths

Transport from BSA to Photocathode

Comparison of setups for UV and green

- UV baseline:
 - Standard 4f system
 - Magnification M = 1
 - RMS radius <1µm for all spots

- No solution found with two original lenses \rightarrow add third lens
- Magnification M = 1.3
- RMS radius <1µm for all spots
- Position of two original lenses is unchanged

Cost estimation

Options

٠

•	Exchange of mirrors (must for green option)				
	 MBI / ELLA / Pharos on laser table: ≈10 mirrors 	1500€			
	Shaft / tunnel beamline: 12 mirrors	5800€			
	Laser trolley: 7 mirrors	1750€			

• Lenses / vacuum window with AR coating for UV and green (not necessary for first tests)

 MBI / ELLA / Pharos on laser table: 3 lenses 	350 €
 Shaft / tunnel beamline: 4 lenses + vacuum window 	6500€
Telescope	
3 lenses	350 €
2 translation stages	5000€

Summary

- Variable beam size: adding telescope to beam line is possible good solution was found for a zoom range of 4x (M = 2.5...10) with 8x possible (deteriorating beam quality, strongly increasing travel range). Is 4x enough? If not: further design studies.
- Beam line with current shaft lenses can be adjusted for different magnifications, e.g. M = 1 for ELLA
- Transport of green line without image quality loss is possible by adjusting lens positions on laser table only (shaft lenses are unchanged)
- Telescope size and travel range suitable for setup on laser table
- Beamline from BSA to photocathode can be adjusted for green light by adding one lens
- Total cost estimation for hardware given
- It is possible to use current lens setup for all lasers simultaneously (only one beamline in shaft and tunnel!)
 - Shaft: exchange of lenses with optimized AR coating; tunnel: one movable lens needed