
Image Filtering for PITZ

Holger Huck

12.04.2018, PPS

> Motivation: first SLEM@PITZ

> Systematic errors

> Noisecut methods

> Experimental results

> Conclusions & Outlook

Holger Huck | Image Filtering | 12.04.2017 | Seite 2

Emittance Measurement: Slit Scan vs. Quad Scan

> Preferable technique at high space

charge and low energy (PITZ case)

> Significant intensity losses due to slit

Slit scan Quad scan

> Standard technique for high energy

and well known beam optics

> @PITZ we observed significant

discrepancies between optics

model(s) and optics measurements

(i.e. effect of steerer kick)!

Both techniques can be done temporally

resolved (SLEM) by using a vertically-deflecting

TDS inbetween and scanning/analyzing

horizontally…

…even more severe intensity losses!

Holger Huck | Image Filtering | 12.04.2017 | Seite 3

Motivation: First SLEM Analysis (Slit Scan)

Example of slit-scan

with very low intensity

(500 pC, TDS on, manual image

taking & averaging x30)

> Resulting (projected)

emittance strongly depends

on image filter parameters

> Standard „emwiz“ algorithm

even regards 7 out of 14 slit

positions as pure noise

avg 𝑖𝑚𝑔 − avg(𝑏𝑔)

Holger Huck | Image Filtering | 12.04.2017 | Seite 4

Fit – FWHM – rms

> Noise hardly matters when fitting

> Systematic errors for Gaussian fits

usually come from wrong baseline

> So just ensure proper background

subtraction (or baseline offset as fit

parameter)

> Only works for well-known, esp.

Gaussian distributions

 …which we usually do not have at linacs

 …and certainly not in slit scans

Fitting the distribution Statistical methods

> FWHM and absolute maximum

strongly depend on peak noise

 Should be combined with fit or

smoothing

> rms deviation and centroid strongly

depend on noise (and background)

outside the actual beam

 Noisecut important (i.e. use a mask of

interest)

 FWHM = ???

Holger Huck | Image Filtering | 12.04.2017 | Seite 5

Background Subtraction

> Too much background

subtracted, e.g…

> „envelope“ (=max)

> „env+3rms“

Correct baseline
Overestimation

Underestimation

> Forgot to subtract

background

> Or didn‘t allow negative

pixel values

avg 𝑖𝑚𝑔 − avg(𝑏𝑔)

avg 𝑖𝑚𝑔 − max(𝑏𝑔)

avg 𝑖𝑚𝑔 − (max 𝑏𝑔 + 3std(𝑏𝑔))

max (0, avg 𝑖𝑚𝑔 − avg 𝑏𝑔)

Holger Huck | Image Filtering | 12.04.2017 | Seite 6

Why do we need noisecut…

…shouldn‘t pos./neg. noise cancel out with correct baseline?

> Simulation: 50 shots of the same signal (2d Gauss) within a large

image of random noise (Gaussian distributed, mean=0)

> Calculate rms and centroid as function of ROI size

𝑆2𝑁 = max 𝑠𝑖𝑔𝑛𝑎𝑙 /STD(𝑛𝑜𝑖𝑠𝑒)

𝜎𝑆 = signal width (“beam size”)

𝑑𝐸𝑋 = 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 − 𝐸𝑋

(„3000“ criterion at PITZ translates to an S2N of 50 – 100)

Holger Huck | Image Filtering | 12.04.2017 | Seite 7

Why do we need noisecut…

…shouldn‘t pos./neg. noise cancel out with correct baseline?

No, not even ideal, homogenous Gaussian noise cancels out!

To keep errors <5%, we need a ROI of 3-6 sigma @S2N~100

Holger Huck | Image Filtering | 12.04.2017 | Seite 8

Why do we need noisecut…

effect of incorrect baseline (mean noise level > 0)

Holger Huck | Image Filtering | 12.04.2017 | Seite 9

Noise inhomogeneity

MOI & EMSY

background, n=10

noise map = bg_rms(x,y) bg_mean(x,y)

Holger Huck | Image Filtering | 12.04.2017 | Seite 10

Noise inhomogeneity

MOI & EMSY

background, n=10

slit scan (beamlet)

background, n=144

noise map = bg_rms(x,y) bg_mean(x,y)

Holger Huck | Image Filtering | 12.04.2017 | Seite 11

Noise inhomogeneity

Noise depends on gain and on intensity!

>> mean noise ~2x“gain“ (at least for YAG@H1S1,S4,PST1)

>> local (signal) noise ~2x mean noise

MOI_bg, gain=22

=>mean noise=48
scan_bg, gain=22

=>mean noise=49

EMSY1, gain=23

=>mean noise=52

Holger Huck | Image Filtering | 12.04.2017 | Seite 12

Noise inhomogeneity

MOI, gain=18

Conclusions

> PITZ screen stations (YAG+ProSilica) exhibit

strong noise inhomogeneity at higher gain

 Open questions: Does sum-of-pixels (beam signal) depend on

screen position as well? Should we exchange cameras?

 Update: acc.to SW, new cameras do not have this problem!

> Noise depends on gain and intensity

> Mean noise level roughly „2.2x gain“, independent

on screen and #images (10<n<450)

> local (signal) noise ~2x mean noise

> Fabric / raindrop structure on all slitscan

bg_rms(x,y) images, but not on MOI / EMSY

 Open question: due to high n or slit movement?

Holger Huck | Image Filtering | 12.04.2017 | Seite 13

Background issues

LYSO screen, not

visible w/o beam

> All analyzed slit scans yield larger emittance

values when cutting less noise (should be

randomly larger and smaller)

> Reason might be background being not

independent on beam signal, which can have

many causes:

 Real beam halo

 Optics: stray light

 Screen: scattering

 CCD: bleeding

> Very obvious on HTR @LYSO images

 Need to check new LYSO for this effect!

(Image not saturated)

Holger Huck | Image Filtering | 12.04.2017 | Seite 14

> CK

> emwiz / emcalc

> TDS_tool

> MYan

> HH

> Motivation: first SLEM@PITZ

> Systematic errors

> Noisecut methods

> Experimental results

> Conclusions & Outlook

Holger Huck | Image Filtering | 12.04.2017 | Seite 15

ck_centroid2d*

*C. Koschitzki,

A coherent definition for the width and position of 2

dimensional objects and how to calculate them introducing

threshold masked centroids, PPS 29.08.2017

1. Find maximum of image

2. Find the region of connected pixels

around maximum that are above

threshold. Crop.

3. (optional) Check if region has

enough pixels in them. If not: set

region to zero and start over

4. Calculate Centroid

> Very fast

> No smoothing

> Threshold=?

rms vs. threshold

Holger Huck | Image Filtering | 12.04.2017 | Seite 16

ck_centroid2d*

*C. Koschitzki,

A coherent definition for the width and position of 2

dimensional objects and how to calculate them introducing

threshold masked centroids, PPS 29.08.2017

1. Find maximum of image

2. Find the region of connected pixels

around maximum that are above

threshold. Crop.

3. (optional) Check if region has

enough pixels in them. If not: set

region to zero and start over

4. Calculate Centroid

> Very fast

> No smoothing

> Threshold=?

“Performance depends slightly on threshold. It can however be

considered consistent for a set of data analyzed with the same

threshold”, same s2n and same signal shape.

> Usually NOT a clear corner

> Arbitrary definition of correct

threshold, rms, emittance…

> Problem of ALL methods!

rms vs. threshold

Holger Huck | Image Filtering | 12.04.2017 | Seite 17

Why we need smoothing…

> Cutting noise simply at a threshold pixel value

favors positive noise pixels!

> Extreme example: Threshold = 0 has same

effect as not allowing negative pixel values

> Solution: Create a mask of interest and restore

original pixel (incl. negative) values inside

Holger Huck | Image Filtering | 12.04.2017 | Seite 18

Why we need smoothing…

> Cutting noise simply at a threshold pixel value

favors positive noise pixels!

> Extreme example: Threshold = 0 has same

effect as not allowing negative pixel values

> Solution: Create a mask of interest and restore

original pixel (incl. negative) values inside

 But mask outline must NOT depend on local noise levels!

mean noise level > 0

> Smoothing before cutting

> Identify main island(s)

> Generally work on small ROI

Holger Huck | Image Filtering | 12.04.2017 | Seite 19

emwiz / emcalc

1. raw(x,y) = avg(img)-avg(bg)

2. bg_rms(x,y) = pixel-wise STD of bg images

3. Noisecut: raw(x,y) < 1 * bg_rms(x,y) ? => pixel = 0

4. „Smoothing“: any neighbor == 0 ? => pixel = 0

 For MOI/EMSY 3 instead of 8 neighbors

5. Around 1 pixel of what remains after (4.), restore raw(x,y)

 For MOI/EMSY 7x1 L-Shape instead of 8 neighbors

L. Staykov, PhD thesis, Hamburg 2008, p.125 (App.A)

> Very fast matlab version is now

available (different MOI, see p21)…

 5 sec loading fastscan data (150 frames)

 10 sec filtering & drawing & Twiss calculation

> MOI issues

 L-Shape questionable

 standard MOI might still cut too much from

beamlets due to much lower camera gain

> Completely eradicates thin or noisy

structures (no matter the intensity!)

> Consistent emittance definition

through s2n control („3000-criterion“)

Holger Huck | Image Filtering | 12.04.2017 | Seite 20

Noisecut2.m (by BB) / TDS_tool

1. (assumes: raw(x,y) = avg(img)-avg(bg))

2. Determine beam size by (Gauss-) fitting x- and y-

profile, s=max(sx, sy)

3. Smooth/blur image (convolute raw(x,y) with 2D-

Gaussian filter of size s)

4. Gauss fit of histogram of original image (assumes

Gaussian noise distribution, and noise area >> beam)

5. Define noisecut threshold t relative to (4.)

6. mask(x,y) = (blur(x,y) < t)

7. Keep only the one connected area with the largest pixel

value in mask(x,y)

8. Restore raw(x,y) inside mask, set to 0 outside

9. subtract mean noise = avg(raw(outside mask))

> universal approach…

> …that often fails

> many fits, very slow

> parts unused/unfinished

Holger Huck | Image Filtering | 12.04.2017 | Seite 21

MYan*

1. (b) = (a) – background

2. (c) = Split-Gauss fit of histogram of (b), to get

peak position 𝜇0

3. (d) = (b) - 𝜇0

4. (e) = Smooth (d) with 7x7 Gaussian filter

5. Split-Gauss fit of histogram of (e) => 𝜇, 𝜎

6. (f) = ((e) < (𝜇 + 2 𝜎))

7. (g) = Keep only the one connected area with the

largest pixel value in mask (f)

8. (h) = Restore (b) inside mask, set to 0 outside

> refined version of noisecut2

> (2,3) have no effect

> assumes homog.BG

> threshold still arbitrary
*Minjie Yan, PhD thesis, Hamburg 2015, p.143-144 (App.D)

Holger Huck | Image Filtering | 12.04.2017 | Seite 22

HH („f4_1“ filter)

1. Automatic rectangular ROI from MOI.imc with

generous smoothing (~75 pixel running average),

also cut screen edges

2. raw(x,y) = avg(img)-avg(bg), ROI sized

3. bg_rms(x,y) = pixel-wise STD of bg images

4. Smooth/blur image (convolute raw(x,y) with 2D-

Gaussian filter of size s)

5. mask(x,y) = (blur(x,y) < t * bg_rms(x,y))

6. Keep only the n connected area(s) with largest

pixel value in mask(x,y)

7. Restore raw(x,y) inside mask, set to 0 outside

8. Optionally: subtract mean noise level (i.e. avg(img

outside ROI)) (effect <<1% with proper bg)

9. Optionally: apply median filter to remove salt-and-

pepper noise (effect ~1%)

> very fast (no fits, no

x/y loops, uses ROI)

> safe MOI/ROI size

> smoothing

> threshold based on

local noise levels

Preliminary name of filter:

„fs_t“ (e.g. f4_1)

Holger Huck | Image Filtering | 12.04.2017 | Seite 23

Comparison of noisecut methods

Description PRO CONTRA

CK ck_centroid2d fast No smoothing

emwiz Used in fastscan3 fast, PITZ standard,

uses bg_rms(x,y)

Cuts too much

TDS_tool Noisecut2.m (BB) Slow; often fails for

small/asym. beams;

parts unfinished/unused

MYan Advanced version of

noisecut2 (XFEL, PSI)

Slow, and assumes

homogenous bg

HH f4_1 promising candidate

for new PITZ standard?

fast, tunable, uses

bg_rms(x,y)

No fixed settings that

work for all s2n (true for

all noisecut methods)

Holger Huck | Image Filtering | 12.04.2017 | Seite 24

> Motivation: first SLEM@PITZ

> Systematic errors

> Noisecut methods

> Experimental results (filtering first SLEM data)

> Conclusions & Outlook

Holger Huck | Image Filtering | 12.04.2017 | Seite 25

Slit scan + TDS @PITZ: First Setup

> Setup: EMSY2 slit, 5 m drift length to PST.Scr1 with TDS inbetween

> Manual slit scan in order to average 10 images at each slit position for

higher signal-to-noise ratio

 fastscan3 and emcalc do not support image averaging at discrete slit positions!

 „manual“: image taking using video client, manual slit positioning

> Matlab tools written for offline image filtering and analysis

 Main idea: cut beamlet images in vertical slices and analyse those separately

> 500 pC, 1 nC, short and long Gaussian laser pulses

> 10-30 slit positions, 50 µm slit

> Also fastscans and manual scans w/o TDS done

Holger Huck | Image Filtering | 12.04.2017 | Seite 26

Matlab tools

2. SlitScan.m (image filtering)

• Load fastscan or manual scan data

• Various tunable filter methods

• Calculate projected PS & emittance

• „auto“ button for 1-click analysis of full

scan

• Save filtered images (for SlemCalc.m)

3. SlemCalc.m (SLEM analysis)

• Load filtered images from SlitScan.m

• Tunable vertical slicing

• GUI shows PS, SLEM & mismatch to

projected values, also filtered images

𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ = (𝛽0𝛾 − 2𝛼0𝛼 + 𝛾0𝛽)/2

1. SlitScanner.m (measurement)

• Move slit, acquire & save n images at

each slit position

• Also write text/log file understandable

by SlitScan.m
• WIP...: improve GUI, combine with SlitScan, final goal:

obsolete fastscan & emcalc

Holger Huck | Image Filtering | 12.04.2017 | Seite 27

Results of first experiments (selection)

Setup emcalc f_emwiz f4_2 f4_1 f4_0.5 f2_0.25 f2_0.13 emcalc f_emwiz f4_2 f4_1 f4_0.5 f2_0.25 f2_0.13

500pC (#1) fastscan 1 1,03 5,64 5,8

TDS off 1,73 0,88 1,06 1,4 1,76 7,3 4,33 5,3 6,37 7,62

TDS on 2,03 0,3 0,42 1,28 1,75 2,81 1 1,32 2,41 3,15

cSLEM 0,2 0,3 0,6 0,8

500pC (#2) fastscan 1,9 1,85 2,26 2,95 2,3 2,36 2,54 3,02

TDS off 1,7 1,6 1,7 1,76 1,76 1,9 2,3 2,12 2,24 2,42 2,25 2,48

TDS on 1,9 0,6 0,55 1,29 1,83 2,2 3,1 1,2 1,23 2,22 2,82 3,31

cSLEM 0,37 0,5 0,75 0,8 1,2

500pC (#3) fastscan 1,49 1,46 1,64 1,88 1,52 1,53 1,69 1,92

TDS off 1,8 1,65 1,76 1,82 1,84 1,94 1,98 1,75 1,87 1,88 1,82 1,96

TDS on 1,71 0,81 0,82 1,36 1,65 2,04 2,03 1,13 1,24 1,67 1,91 2,1

cSLEM 0,5 0,6 0,8 1 1,2

1nC SG BSA2.4 fastscan1 2,9 3,1

fastscan2 1,7 2,6

(12 ps@TDS) TDS off 4,03 2,19 2,03 2,28 2,6 4,85 3,03 2,94 3,2 3,46

Q5/6=3.3/-4.1 TDS on+ 7,26 1,44 0,87 1,56 2,13 7,47 2,16 1,55 2,4 3,02

n_slit=10 TDS on- 4,81 1,29 0,7 1,44 2,28 5,97 2,07 1,47 2,3 3,17

cSLEM+ 1 0,7 1,2 1,7

cSLEM- 0,9 0,5 1,2

1nC SG BSA2.2 fastscan 1,8 2,3

Q5/6=+4/-4 TDS off 3,6 1,64 1,51 1,91 2,23 5,1 2,58 2,55 2,89 3,14

TDS on+ 3,2 1,28 0,77 1,52 2,11 4,7 2,01 1,68 2,38 2,95

n_slit=30 TDS on- 3,3 1,26 0,83 1,5 2,03 4,5 2,05 1,68 2,43 2,85

cSLEM+ 1,1 0,7 1,4 1,8

cSLEM- 1,2 0,8 1,4 1,8

Holger Huck | Image Filtering | 12.04.2017 | Seite 28

Conclusions

> Manual slitscan with 10-30 slit positions

work fine

> Image averaging at fixed slit positions

works fine (better s2n)

> Adjusted FFT/noisyframe filter works fine

> emcalc_filter.m works fine with good s2n

 (and very fast, 15s for 150 beamlets)

> f4_1 filter looks promising as new

standard noisecut filter

 slightly slower (+1s) (+1s for median filter)

 slightly higher emittance values (~10-20%)

> Slicing of filtered images works fine

 non-scaled center slice emittances are, as

expected, roughly between 50% and 100% of the

non-scaled projected emittance

> Systematic errors from finite slit width

under investigation, probably not critical

> When turning on TDS, intensity dropped

so much that even with image averaging

s2n was too bad for emcalc and f4_1

> Other filters, e.g. f2_0.25 might be used

here, but results are very sensitive to

noise-cut options, thus questionable

> PITZ EMSY scaling helps to reduce

discrepancies, but not enough

> Must not have waist/focus between slit

and screen

 

Holger Huck | Image Filtering | 12.04.2017 | Seite 29

Outlook

> LYSO@PST.Scr1 finally installed!

 Will enable lower charge measurements and smaller slit (10 vs. 50 µm)

 Better signal-to-noise ratio, robust filtering

 Larger scan range

 Maybe we can even use continous fastscan (no manual avg.)

 But also need to check LYSO resolution and stray light (background vs. signal)

> Already during gun conditioning, spend 1-2 shifts each week for

testing & bug fixing

> Combine the 3 matlab tools, shrink & speed up saving/loading

> More extensive measurement GUI (might fully replace emwiz suite…)

> ? Find reasonable noisecut threshold as function of s2n?

> ? Define a „core SLEM“ (charge-cut in 3D)? instead of arbitrary „100%“ claim?

> Systematic scans (laser shape, solenoid, charge, BSA,...thesis RN)

Holger Huck | Image Filtering | 12.04.2017 | Seite 30

SoP(EMSY) preservation in solenoid scan?

> For the three gain=5 measurements, everything stays within a few

percent fluctuation

 Accuracy of method not good enough to prefer one filter over another

 But it shows that for high s2n filter choice does not matter!

> Meaning of gain parameter unclear…measurements suggest it is not dB

(10*log10), but close to 21.5*log10 (or 10*ln?)

> SoP(2 pulses) = 0.82*2*SoP(1 pulse)

 Operator mistake? Wrong gain values?

82% of expected

value

Holger Huck | Image Filtering | 12.04.2017 | Seite 31

FFT/noisyframe filter

old code (getimage.m), often

removes ~30% of all images

> new code (bad_frame.m) uses normalized

FFT-rating and allows offset

> works fine for 2x2 binning (PITZ standard)

and offset of 5%

> other binnings might need other offset

> …should we integrate this to getimage.m?

Holger Huck | Image Filtering | 12.04.2017 | Seite 32

Filtering out spatial noise

Compared for High2.Scr1, only background (no

real signal)

> Current implementation (by James): log10(FFT

of 1-d projection of image)

 if the amplitude of the noise frequency higher than mean

– noisy frame

 if fftproj(129) > mean(fftproj)

 Holger mod.: if normalized value larger than an offset –

noisy frame

 if
fftproj(129)−mean (fftproj)

fftproj(129)+mean(fftproj)
> offset

 Previous filter (also by James): log10(2-d FFT projection of

image)

 If the amplitude of noise frequency is higher than mean +

4σ – noisy frame

 if val > Jmean+(4*Jstd)

 Slow on full resolution images

 1000 frames 1-d

(James)

1-d

(Holger)

2-d

(James)

2x2 binning 23 3 22

Full res. 613 38 38

Holger Huck | Image Filtering | 12.04.2017 | Seite 33

Filtering out spatial noise

> For 2x2 images, Holger’s mod filters out images with a strong noise, however keeps

images with low noise

> For Full res. Images, Holger’s mod filters the same frames as 2-d FFT (some are really

low noise), while being much faster. 1-d implementation by James does not work

properly

> Tests on other cameras needed

> Tuning of the offset parameter?

> If agreed on the filter – a week by week degradation monitoring of cameras could be

included into the start up checklist (a script is needed)

Conclusion

Strong noise Low noise Low noise (log scale)

1000 frames 1-d

(James)

1-d

(Holger)

2-d

(James)

2x2 binning 23 3 22

Full res. 613 38 38

