DPG Spring Meeting 2018

Highlights from Würzburg

Osip, Ye & Raffael

PITZ Photo Injector Test Facility

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Würzburg

Located in northern Bavaria, on the Main River, population ~ 124.000 people

Poster Session in the dark

- Three sessions per day, all at the same time
- Poster session in the dark
- Few to non-existent discussions after talks.. $\boldsymbol{\boldsymbol{\Im}}$

[1]

Poster Session in the dark

- Three sessions per day, all at the same time
- Poster session in the dark
- Few to non-existent discussions after talks.. $\boldsymbol{\boldsymbol{\Im}}$

Poster Session in the dark

- Three sessions per day, all at the same time
- Poster session in the dark
- Few to non-existent discussions after talks.. $\ensuremath{\mathfrak{S}}$

Segmented THz Electron Accelerator & Manipulator (STEAM)

- Accelerating, streaking, compressing & compression in one
- Superposition of electric and cancellation of magnetic fields or superposition of magnetic and cancellation of electric fields
- Phase-matching inside STEAM device by insertion of dielectric slabs

^[1] D. Zhang, CFEL, DESY.

First ERL Operation of S-DALINAC

- It works! (First time in Germany)
- Phase change by moving magnets + beam pipe
- Phase has to be changed by ~ 126 deg, reason unknown

First ERL Operation of S-DALINAC

- It works! (First time in Germany)
- Phase change by moving magnets + beam pipe
- Phase has to be changed by ~ 126 deg, reason unknown

Cooled GaAs cathodes at S-DALINAC

- Polarized electrons (> 40 %)
- Electrostatic acceleration
- Frequency-tripled Ti:Sapphire Laser as photocathode laser

3D Space Charge Tracking

- Using fast multipole methods
- Bundle distant electrons to effective SC force
- Code still under construction
- Example run was 6 times faster than ASTRA, deviation was < 0.5 %

[1] S. Schmid, TU Darmstadt.

3D Space Charge Tracking

- Using fast multipole methods
- Bundle distant electrons to effective SC force
- Code still under construction
- Example run was 6 times faster than ASTRA, deviation was < 0.5 %

- Quadrupole Scan, but...
- Quadrupole strength k depends on momentum
- Emittance (assumed to be) equal for all momenta
- Emittance from Spectrum: Beam size vs energy

[1] S. Schmid, TU Darmstadt. [2] L. Hübner, CFEL, University Hamburg.

[2]

They weren't sharing slides...

Two counter-propagating THz beams interacting with the 55 keV electron beam inside the segmented THz waveguide structure

Transverse pumping and segmented structure for phase-matching the electron-THz interaction for non-relativistic beams ("high-gradient photogun")

Mode Switch	Experiments of STEAM using 2×6 µJ of THz energy			
	Mode	Function	Performance	Realization
By tuning the relative delay of the two THz pulses and the electrons (controlled by motorized stages acting on the respective IR pump beams)	''E-mode'' (with canceled B)	Acceleration	50 MV/m (average)	Control of electron-THz interaction: Segmentation → multiple layers of varying thickness (+ e- velocity)→dephasing Insertion of dielectric slabs of variable length → delay THz
		Compression	1ps to 100 fs	Velocity bunching → compression or stretching For measurement of compression, a second STEAM device used as streaker
		Focusing	focusing strength of up to 2 kT/m (comparable to active plasma lenses)	Panofsky-Wenzel theorem Focusing configuration \rightarrow decompression condition Defocusing configuration \rightarrow compression condition
	''B-mode'' (with canceled E)	Streaking	streaking gradients in excess of 140 μrad/fs temporal resolution below 10 fs	Use zero crossing of the THz B-field

Laser parameters:

(i) 4 mJ, 1030 nm Yb:KYW laser operating at 1 kHz(ii) 40 mJ, 1020 nm Yb:YLF laser operating at 10 Hz

Simulations showing

MeV electron beams with up to **10 pC** of charge possible by increasing number of layers and THz pulse energies to **mJ** level

