Progress towards slice emittance measurements at PITZ

Raffael Niemczyk for the PITZ team, Würzburg, March 20th 2018

- Slit-scan based slice emittance test measurements
- Beam Transport Studies as preparation of quadrupole-based slice emittance measurements

PITZ Overview

Photo-Injector Test Facility at DESY, Zeuthen Site

- Three EMSY stations (movable slit)
 - Two before and one after the TDS
 - Standard measurement device for projected emittance

Several quadrupoles and screens

- Different combinations of elements possible
- Enable multi-quadrupole scan
- TDS
 - Measurement of longitudinal beam profile
 - Slice properties can be measured

Transverse Deflecting Structure (TDS) at PITZ

Photo-Injector Test Facility at DESY, Zeuthen Site

Measurement possibilities with TDS:

- Longitudinal profile
- Longitudinal phase space
- Twiss parameters longitudinally resolved
 - > Slice emittance
- Properties:
 - Frequency: 3 GHz (S band cavity)
 - Power: 2.1 MW \rightarrow 1.7 MV deflection voltage
 - Pulse length: up to 3 μs
- Hardware status
 - Design parameters almost reached due to high reflectivity from wave guide
 - Small matching pieces mounted, but high power test to be done

Slit-Scan Method

Slit-based slice emittance measurements

- Cut out beamlets with a slit
 - Measure the size, position and intensity of each beamlet on screen
- Reconstruct the phase space at slit position
 - Calculate the emittance in **one** plane via [3] $\epsilon = \sqrt{\langle x_0^2 \rangle \langle x_0'^2 \rangle \langle x_0 x_0' \rangle}$

Slit-Scan Data Filtering

Testing influence of filter settings Filter algorithm:

- Smoothing raw data with gauss
 - Parameter: N₁ * RMS smoothing
- Pixelwise: setting values to zero with

value < N₂ * RMS_{Background}

Parameter: N₂ * RMS_{Background}

Observation:

- Signal very sensitive to parameter setting
- Reconstructed emittance values very sensitive

Quadrupole-Scan

Quadrupole-scan based slice emittance measurement

- Measure the beam size with different optics applied
- Get the Twiss parameters from fit [3]

$$\langle x^2 \rangle = R_{11}^2 \langle x_0^2 \rangle + 2R_{11}R_{12} \langle x_0 x_0' \rangle + R_{12}^2 \langle x_0'^2 \rangle$$

> Calculate the emittance [3] via

$$\epsilon = \sqrt{\langle x_0^2 \rangle \langle x_0'^2 \rangle - \langle x_0 x_0' \rangle}$$

Calibrate the quadrupoles by beam transport

- Method: Probe an optics by kicking the beam
 - Kick the beam \rightarrow change the angle at the beginning
 - Measure the beam position on screen
 - Get the transfer matrix element by linear fit

Calibrate the quadrupoles by beam transport

- Results: Theoretical and experimental results don't match..
 - Almost always deviation
 - Experimental values in general bigger than theoretical ones
 - Different quad models yield similar results

	June	Oct
Steerer Magnet	$\frac{\mathrm{d}x'}{\mathrm{d}I}\left(\frac{\mathrm{mrad}}{\mathrm{A}}\right)$	
HIGH1.St1	1.39	0.58
HIGH1.StA1	1.11	0.54
HIGH1.St2	-0.47	-0.35
HIGH1.StA2	-1.41	-1.79

Calibrate the quadrupoles by beam transport

- Results: Theoretical and experimental results don't match..
 - Almost always deviation
 - Experimental values in general bigger than theoretical ones
 - Different quad models yield similar results
- > Try the analysis with the old steerer strength

	June	Oct
Steerer Magnet	$\frac{\mathrm{d}x'}{\mathrm{d}I}\left(\frac{\mathrm{mrad}}{\mathrm{A}}\right)$	
HIGH1.St1	1.39	0.58
HIGH1.StA1	1.11	0.54
HIGH1.St2	-0.47	-0.35
HIGH1.StA2	-1.41	-1.79

Use the steerer strength from June

- Much better matching, partially perfect results
- But: Other deviations grew bigger
- Different impact on different planes

	June	Oct
Steerer Magnet	$\frac{\mathrm{d}x'}{\mathrm{d}I} \left(\frac{\mathrm{mrad}}{\mathrm{A}}\right)$	
HIGH1.St1	1.39	0.58
HIGH1.StA1	1.11	0.54
HIGH1.St2	-0.47	-0.35
HIGH1.StA2	-1.41	-1.79

Use the steerer strength from June

- Much better matching, partially perfect results
- But: Other deviations grew bigger
- Different impact on different planes

> Reason for (obviously) wrong calibration factors?

- Beam momentum okay (cavity power was checked)
- Other magnets off? (has been considered)

→ Reason for wrong calibration factors remains unknown

	June	Oct
Steerer Magnet	$\frac{\mathrm{d}x'}{\mathrm{d}I} \left(\frac{\mathrm{mrad}}{\mathrm{A}}\right)$	
HIGH1.St1	1.39	0.58
HIGH1.StA1	1.11	0.54
HIGH1.St2	-0.47	-0.35
HIGH1.StA2	-1.41	-1.79

Outlook

Further proceeding, next measurement program

Slit-based SLEM

- LYSO screens will increase sensitivity
- Improve tools for **online** slice emittance measurements

> Quadrupole-scan based SLEM

- New calibration of quadrupole and steering magnets (repeat measurement)
- Robust optics have to be developed (small sensitivity to magnetic errors)

Literature list

[1] D. Malyutin, *Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ*, PhD thesis, Universität Hamburg (2014).

[2] S. Rimjaem et al., *Optimizations of transverse projected emittance at the photo-injector test facility at DESY, location Zeuthen*, Nucl. Instr. Meth. Phys. Res. A **671**, 62 – 75 (2012).

[3] M. Yan et al., *Comparison of quadrupole scan and multi-screen method for the measurement of projected and slice emittance at the SwissFEL injector test facility*, Proceedings of the 36th International Free Electron Laser Conference, Basel, Switzerland, 941 (2014).

