Light absorption and electron-phonon scattering in Cs₂Te photocathodes

- **1. Optical properties and models**
- 2. Electron-phonon scattering effects and calculations
- **3.** Contribution of scattering effects to QE in the presence of penetrating fields
- 4. Next steps

Ye Chen, PPS, DESY Zeuthen, 08.03.2018

Motivation

- \rightarrow "Single electron emission" (without collective effects) not well fitting to photoemission measurements in space charge dominated regime
- \rightarrow Understanding of slice emittance formation and optimization of projected transverse emittance requiring improved photoemission modeling
- \rightarrow Field effects (previously) considered for "electron escape" (3rd step of Spicer's) to the vacuum (close to but outside of surface), but not yet for "electron transport" (2nd step) to the cathode surface (beneath it)

To dos:

- \rightarrow Establish modeling approaches for light absorption and electron scattering (first without fields)
 - \rightarrow Evaluation of (optical + band structural) property parameters for Cs₂Te (missing in general)
- \rightarrow Introduce field (RF + SP-CH + laser) dependencies to electron scattering process (first with RF fields)
- \rightarrow Characterize improved emission model by **measurements**
- \rightarrow Simplify the model for **PIC simulations** and implement it with a suitable numerical tool

Photoemission in a nutshell

Analysis of measured optical property parameters of Cs₂Te

Refraction index *n*; Extinction coefficient *k*; Reflectivity coefficient *R*; Penetration depth δ ; Permertivity ε_r

 \Box Complex refraction coefficient of materials: $\hat{n} = n + ik$

□ Data* ($\lambda \in [250 517]$ nm) from sets of reflectivity measurements and dispersive analysis $\rightarrow n \in [0.8 1.8]$; $k \in [0.3 0.7]$;

Cross-Refs: for CsI,

 \Box Numerical analysis with (n, k) data sets (250-517 nm)

Formulizing (n, k) dependencies based on the Drude-Lorentz model

n: refraction index; *k*: extinction coefficient; $\hat{n} = n + ik \rightarrow optical properties$

Lorentz oscillator model

- Dispersive response of materials to external driving force (fields)
 by influencing the intrinsic wave impedance
- $\square \text{ Intrinsic wave impedance} \quad \eta(\omega) = \frac{\eta_0}{n(\omega)} \quad n(\omega) = \frac{c}{v_n}$
- □ Lorentz oscillator system
 - "Dipole motion" harmonically responding to the driving field
 - **Restoring** (Coulomb) force trying to maintain system equilibrium
 - Dampening term modeled by m_{eff}/τ

Formulizing (n, k) dependencies based on the Drude-Lorentz model Mathematical description

$$\begin{cases} n^{2} - k^{2} \propto \omega, \tau(\omega, T, E_{k}, E_{g}), E_{g} \approx A_{static}\Psi + A_{hf}(1 - \Psi) + DL_{sum} \\ 2nk \propto \omega, \tau(\omega, T, E_{k}, E_{g}), E_{g} \approx (A_{static} - A_{hf})\Phi - DL_{prod} \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

with

$$\Psi = \frac{\omega_T^2(\omega_T^2 - \omega^2)}{(\omega^2 - \omega_T^2)^2 + (\Upsilon\omega\omega_T)^2}, \qquad \Phi = \frac{\Upsilon\omega\omega_T^3}{(\omega^2 - \omega_T^2)^2 + (\Upsilon\omega\omega_T)^2} \qquad DL_{sum} = -\frac{(\omega_p \tau)^2}{1 + (\omega \tau)^2},$$
$$DL_{prod} = \frac{\tau\omega_p^2}{\omega[1 + (\omega \tau)^2]} \qquad \omega_p = \sqrt{\frac{4\pi\rho\alpha_{fs}\hbar c}{m}} \qquad m = \frac{E_g}{E_{Ry}}m_0$$

 ω : light frequency m_0 : electron rest mass ω_p : plasma frequencyc: speed of lightm: electron effective mass α_{fs} : fine structure constant \hbar : Planck constant, $h/2\pi$ ρ : number densityY: Lorentz coefficient E_g : band gap energy τ : relaxation time A_{static} : static (dielectric) constant E_{Ry} : Rydberg energy, ~13 e' ω_T : transverse optical mode frequency A_{hf} : high frequency (dielectric) constant

Given $\omega \sim 10^{15}$ (laser), $\omega_p \sim 10^{13}$ for 10^{17} /cm³, $\tau \sim 100 \times 10^{-15}$ contributions of free carriers $\sim 10^{-4}$

- Given $\omega \sim 10^9$ (RF), $\omega_p \sim 10^{13}$ for 10^{17} /cm³, $\tau \sim 100 \times 10^{-15}$ contributions of free carriers ~ 1
- Given $\omega \sim 10^9$ (RF), $\omega_p \sim 10^{13}$ for 10^{17} /cm³, $\tau \sim 50 \times 10^{-15}$ contributions of free carriers ~0.3

Penetrating RF fields may affect τ and modify (n-k), thus influencing optical properties

A rough fit to the reflectivity measurements for Cs₂Te

Reflectivity coefficient *R*

- No one to one data now from (n, k) to the reflectivity
- The fit done by scanning (n, k) range for smallest Δ*R* w.r.t. measurements satisfying the Drude-Lorentz's equation with lowest errors

DESY. | Light absorption and scattering effects in Cs_2Te | Ye Chen | PPS | Zeuthen, March 8th, 2018

(n, k) data given by D-L model

Refraction index *n* **and extinction coefficient** *k*

Scattering effects in Cs₂Te

□ Electron-electron scattering → dominating for metal cathodes

□ Electron-phonon scattering → dominating for semiconductor cathodes

- **Polar optical phonon** (vibration within a cell, $v_g=0$, standing...)
- Acoustic phonon (vibration of a cell, $v_g > 0$, travelling...)
- $\square Electron-impurity(defect) scattering \rightarrow presumably much weaker effect than others$

DESY. | Light absorption and scattering effects in Cs_2Te | Ye Chen | PPS | Zeuthen, March 8th, 2018

Scattering effects in Cs₂Te

Acoustic phonon^{*a*}

$$\frac{1}{\tau_{ac}} = \frac{4m\Xi^2 k(k_B T)}{\pi\hbar^3 \rho v_s^2} \left(\frac{T}{\Theta}\right)^5 W_{-}\left(5, \frac{\Theta}{T}\right) \propto E_k, E_g, T$$

Polar optica

eal phonon ^b
$$\frac{1}{\tau_{pop}} = 2\omega_q \Delta \epsilon \left[2 \frac{1}{\exp\left(\frac{\hbar \omega_q}{k_B T}\right) - 1} + 1 \right] \frac{16u^2 + 18u + 3}{3(1 + 2u)\sqrt{u(u + 1)}} \propto E_k, E_g, T$$

n's rule $\frac{1}{\omega_q} = \sum \frac{1}{\omega_q} \sum \frac{1}{\omega_q} + \sum \frac{1}{\omega_q} \sum \frac{1}{\omega_q} \sum \frac{1}{\omega_q}$

Matthiessen's rule

$$= \sum_{i} \frac{1}{\mu_{j}} \longrightarrow \frac{1}{\tau} = \sum_{i} \frac{1}{\tau_{j}}$$

Band structural parameters of Cs₂Te need to be calculated for modeling the scattering effects.

$$hk = 2\pi\sqrt{2mE_k}$$
 $E_k = h\omega - E_g - E_a$ $u = E_k/E_g$

μ

Note that, other scattering scheme may exist, but probably not significantly contributing ^a K. Jensen 2007 ("emission from metals and cesiated surfaces") ^b K. Jensen 2008 ("an alpha-semiconductor model") DESY. | Light absorption and scattering effects in Cs₂Te | Ye Chen | PPS | Zeuthen, March 8th, 2018

Calculation of band structural parameters for Cs₂Te

Physical Property	Calculation for Cs ₂ Te	Reference to Cs₃Sb
Mass density	$\rho = \frac{4(2M_{Cs} + 1M_{Te})}{\Delta V} \approx 3.99 \ g/cm^3 $	4.519 g/cm ³
Sound velocity	$v_s = \sqrt{\frac{c_{11}}{\rho}} \approx 5484 m/s^{**}$	5153 m/s
Phonon energy (lowest mode)	$\hbar\omega_q = \frac{4\pi\hbar v_s}{\lambda_{pm}} \approx 0.0767 eV$	0.05 eV
Average ionic radii	$l \approx 0.194 nm^{***}$	0.14 nm
Deformation potential	$\Xi = Dl \approx 9.7 \ eV^{****}$	7 eV
Bloch–Grüneisen function	$W_{-}\left(5,\frac{\Theta}{T}\right) \approx (\frac{\Theta}{T})^4/4$	
Fine structure coefficient	$\alpha_{fs} = e^2 / 4\pi\epsilon_0 \hbar c \approx 1/137.1$	
Effective mass	$m = \frac{E_g}{E_{Ry}} m_0 \approx 0.24 \ m_0$	$0.1176 m_0$
*** Thermal expansion not considered *** Average of the ionic radii of Cs and Te *** Mean deformation potential constant $D = 5 \times 10^8 eV/cm$		

Unit cell of Cs₂Te

Page 11

Calculated effective relaxation time

Optical phonon scattering, τ_{pop}

E_α [eV]

DESY. | Light absorption and scattering effects in Cs_2Te | Ye Chen | PPS | Zeuthen, March 8th, $2018^{0.5}$ ¹

Modeling of electron mobility in presence of penetrating fields

Contributions of each step to the overall QE

□ Factor of reflectivity

$$\propto 1 - R(\omega, n(\tau), k(\tau))$$

□ Factor of work function

$$\propto \sqrt{1 + \frac{\hbar\omega - E_g - E_a(\pm \Delta E_k)}{E_a}}$$

□ Factor of scattering effect

$$\rightarrow l(E_k, E_g, t) = \frac{q\tau^2(E_k)}{m_{eff}(E_g)} E_{in}(t)$$

integration over absorption depth

$$\rightarrow f_{\lambda}(\cos\theta) = \frac{\int_{0}^{\infty} exp\left(-\frac{z}{\delta} - \frac{z}{l\cos\theta}\right)dz}{\int_{0}^{\infty} exp\left(-\frac{z}{\delta}\right)dz}$$

Fraction of surviving electrons from scattering

 θ : escape cone angle, $x = cos \theta$

integration over escape angle and energy

$$\rightarrow \frac{\int_{E_a}^{\hbar\omega - E_g} E \int_{\sqrt{E_a/E}}^{1} x f_{\lambda}(x, p) dx dE}{\int_0^{\hbar\omega - E_g} E \int_0^{1} x dx dE}$$

Next steps

- ✓ Light absorption modeling requires dispersive reflectivity measurements for determining optical parameters
- ✓ Relative permittivity @ 1.3GHz better determined from proper measurements (maybe already at HZDR) or (if no choice) considered as a fitting parameter
- ✓ Some principle test simulations on the scattering rates in the presence of RF fields can be done first

