4D emittance measurement with quads plus slits scan for PITZ (proposal)

Content:

- Motivation and methods
- General idea and principle
- Algorithm for coupling terms/4D emittance measurement with quads plus slits scan
- Experiment setup and simulation studies for PITZ
- Summary

Quantang Zhao PPS, ZEUTHEN 13-02-2018

$$C = \begin{bmatrix} \langle xx \rangle & \langle xx' \rangle & \langle xy \rangle & \langle xy' \rangle \\ \langle x'x \rangle & \langle x'x' \rangle & \langle x'y \rangle & \langle x'y' \rangle \\ \langle yx \rangle & \langle yx' \rangle & \langle yy \rangle & \langle yy' \rangle \\ \langle y'x \rangle & \langle y'x' \rangle & \langle y'y \rangle & \langle y'y' \rangle \end{bmatrix}$$

Background and Motivation

Beam asymmetry observed from experiment

 \rightarrow Due to field imperfection of RF coupler kick and solenoid.

- ➔Normal quads and skew quads can produce the beam wings structure, consistent with experiment results, induce the x and y plane beam coupling.
- →Gun quads are used for compensation the quads error field in the gun section, from experiment confirms work well.

But.... We still need to know....

- Try to find a reasonable and judgeable way to decide the optimized comenpensation quads strength and can optimize....standard procedure.
- ➢ Goal: minimize rms emittance.
- Start from: coupling beam dynamics and 4D beam emittance....

4D emittance measurement Methods

- Applied skewed quadrupoles in combination with a regular slit emittance measurement device.
- A rotatable slit device in combination with regular quadrupoles.
- Multi-quads scan.
- Peper pot.
- Single octupole plus two steerers.

*M. Maier†, X. Du, P. Gerhard, L. Groening, S. Mickat, H. Vormann, C. Xiao, COMPLETE TRANSVERSE 4D BEAM CHARACTERIZATION FOR ION BEAMS AT ENERGIES OF FEW MeV/U, TH2A03 Proceedings of LINAC2016, East Lansing, MI, USA.
*C. Xiao, L.Groening, P.Gerhard, M.Maier, S.Mickat, H.Vormann. Measurement of the transverse four-dimensional beam rms-emittance of an intense uranium beam at 11.4 MeV/u. Nuclear Instruments and Methods in Physics Research A 820(2016)14–22.
*C. Xiao, M. Maier, X. N. Du, P. Gerhard, L. Groening, S. Mickat, and H. Vormann. Rotating system for four-dimensional transverse rms-emittance measurements, PHYSICAL REVIEW ACCELERATORS AND BEAMS 19, 072802 (2016).
*Eduard Prat and Masamitsu Aiba. Four-dimensional transverse beam matrix measurement using the multiple-quadrupole scan technique. PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 17, 052801 (2014).
*R. P. Shanks, M. P. Anania, et al., Pepper-Pot Emittance Measurement of Laser-Plasma Wakefield Accelerated Electrons, https://pure.strath.ac.uk/portal/files/2040338/SPIE_paper.pdf.
*J. Ögren et al., Measuring the full transverse beam matrix using a single octupole, PHYSICAL REVIEW SPECIAL TOPICS—ACCELERATORS AND BEAMS 18, 072801 (2015).

Normal quads plus rotated slit -> principle

Three slits 0 degree, 45 degree, 90 degree and two quads layout

We measured for quads settings both a and b:
<xx>, <xx'>, <x'x'> horizontal slit scan
<yy>, <yy'>, <y'y'> vertical slit scan
<xx>, <xx'>, <x'x'> rotated slit in rotated coordinate

□ With some algorithm to reconstruct the correlations terms at reconstruction point.

One slit scan emittance measurement results from PITZ:

$$\begin{pmatrix} \beta_{x_0} \\ \alpha_{x_0} \\ \gamma_{x_0} \end{pmatrix} = \begin{pmatrix} \langle x_0^2 \rangle / \epsilon_{x, \text{rms}} \\ - \langle x_0 x_0' \rangle / \epsilon_{x, \text{rms}} \\ \langle {x_0'}^2 \rangle / \epsilon_{x, \text{rms}} \end{pmatrix}$$

{	Results		
Laport		Plot system ver. Feb 21 2017	7 17:35:57
rms size	<x<sup>2>₀=0.11800,</x<sup>	<y <sup="">2>₀=0.13100</y>	[mm]
Electron beam:			
Momentum gun	6.63000	± 0.0059	[MeV/c]
Momentum booster	22.30000	± 0.0114	[MeV/c]
or yag	0.31860		[mm]
Gacan	0.29426		[mm]
divergence	0.14251		[mrad]
covariance	0.03773		[mm mrad]
sheared div	0.01829		(mrad)
LDrift	3.64300		[m]
β	4.73331		(mm)
Y	1.11021		(mrad)
α	-2.06275		[mm mrad]
βγ-α²	1.00000		
€scaled sheared	0.843		[mm mrad]
Eno scaled	0.798		[mm mrad]
€scaled 2D	0.864		[mm mrad]
Comments: no comm			

We can get

<xx>, <xx'>, <x'x'> horizontal slit scan <yy>, <yy'>, <y'y'> vertical slit scan <xx>, <xx'>, <x'x'> rotated slit in rotated coordinate

Rotated slit scan measurement

✓ In the X'-Y' coordinate, we can consider it same as horizontal slit scan along X'. We can get $\langle xx \rangle$, $\langle xx' \rangle$, $\langle x'x' \rangle$ in X'-Y' coordinate at slit position.

Algorithm

The transport of the beam matrix from location i to location f can be calculated as

 $C_f = M C_i M^T,$

M is the transport matrix between location i and location f.

The transports M^a or M^b of single particle coordinates from location i to location f using magnet settings a or b.

$$\begin{bmatrix} x \\ x' \\ y \\ y' \end{bmatrix}_{f}^{a,b} = \begin{bmatrix} m_{11}^{a,b} & m_{12}^{a,b} & 0 & 0 \\ m_{21}^{a,b} & m_{22}^{a,b} & 0 & 0 \\ 0 & 0 & m_{33}^{a,b} & m_{34}^{a,b} \\ 0 & 0 & m_{43}^{a,b} & m_{44}^{a,b} \end{bmatrix} \begin{bmatrix} x \\ x' \\ y \\ y' \end{bmatrix}_{i}, \quad (12)$$

(1) We measured for quads settings both a and b:
<xx>, <xx'>, <x'x'> horizontal slit scan
<yy>, <yy'>, <y'y'> vertical slit scan
<xx>, <xx'>, <x'x'> rotated slit in rotated coordinate

(2) The uncoupled beam matrix at position i can be reconstructed from horitzontal slit scan for horizontal beam matrix at position $f \rightarrow i$.

(3) The same procedure can be used for y slit scan for vertical beam matrix at position $f \rightarrow i$.

$$C = \begin{bmatrix} \langle xx \rangle & \langle xx' \rangle & \langle xy \rangle & \langle xy' \rangle \\ \langle x'x \rangle & \langle x'x' \rangle & \langle x'y \rangle & \langle x'y' \rangle \\ \langle yx \rangle & \langle yx' \rangle & \langle yy \rangle & \langle yy' \rangle \\ \langle y'x \rangle & \langle y'x' \rangle & \langle y'y \rangle & \langle y'y' \rangle \end{bmatrix}$$

DESY. | 4D emittance measurement | Quantang Zhao| PPS | Zeuthen|

$$\begin{aligned} & \text{Coupling terms measurement} \\ & \begin{bmatrix} x \\ y \\ y \\ y \end{bmatrix}_{f}^{a,b} = \begin{bmatrix} m_{11}^{a,b} & m_{22}^{a,b} & 0 & 0 \\ m_{21}^{a,b} & m_{22}^{a,b} & 0 & 0 \\ 0 & 0 & m_{33}^{a,b} & m_{34}^{b,b} \\ 0 & 0 & m_{43}^{a,b} & m_{44}^{a,b} \end{bmatrix} \begin{bmatrix} x \\ y \\ y \\ y \end{bmatrix}_{f}^{c}, \end{aligned} \\ & (12) \\ & (12) \\ & + m_{12}^{a,b} & m_{33}^{a,b} \langle xy \rangle_{i} + m_{11}^{a,b} & m_{34}^{a,b} \langle xy' \rangle_{i}, \\ & + m_{12}^{a,b} & m_{33}^{a,b} \langle xy' \rangle_{i} + m_{12}^{a,b} & m_{34}^{a,b} \langle xy' \rangle_{i}, \\ & + m_{12}^{a,b} & m_{33}^{a,b} \langle x'y \rangle_{i} + m_{12}^{a,b} & m_{34}^{a,b} \langle xy' \rangle_{i}, \\ & \langle xy' \rangle_{f}^{a,b} &= m_{11}^{a,b} & m_{33}^{a,b} \langle xy' \rangle_{i} + m_{12}^{a,b} & m_{34}^{a,b} \langle xy' \rangle_{i}, \\ & \langle xy' \rangle_{f}^{a,b} &= (m_{11}^{a,b} & m_{43}^{a,b} + m_{21}^{a,b} & m_{34}^{a,b} \langle xy' \rangle_{i}, \\ & \langle xy' \rangle_{f}^{a,b} &= (m_{11}^{a,b} & m_{43}^{a,b} + m_{21}^{a,b} & m_{34}^{a,b} \langle xy' \rangle_{i}, \\ & \langle xy' \rangle_{f}^{a,b} &= (m_{11}^{a,b} & m_{43}^{a,b} + m_{21}^{a,b} & m_{34}^{a,b} \langle xy' \rangle_{i}, \\ & \langle xy' \rangle_{f}^{a,b} &= (m_{11}^{a,b} & m_{43}^{a,b} + m_{21}^{a,b} & m_{33}^{a,b} \langle xy \rangle_{i}, \\ & \langle xy' \rangle_{f}^{a,b} &= (m_{11}^{a,b} & m_{43}^{a,b} + m_{21}^{a,b} & m_{33}^{a,b} \langle xy' \rangle_{i}, \\ & \langle xy' \rangle_{f}^{a,b} &= (m_{11}^{a,b} & m_{43}^{a,b} + m_{22}^{a,b} & m_{33}^{a,b} \langle xy' \rangle_{i}, \\ & \langle xy' \rangle_{f}^{a,b} &= (m_{11}^{a,b} & m_{43}^{a,b} + m_{22}^{a,b} & m_{33}^{a,b} \langle xy' \rangle_{i}, \\ & \langle xy' \rangle_{f}^{a,b} &= (m_{11}^{a,b} & m_{43}^{a,b} + m_{22}^{a,b} & m_{33}^{a,b} \langle xy' \rangle_{i}, \\ & \langle xy' \rangle_{d}^{a,b} &= (m_{12}^{a,b} & m_{43}^{a,b} & m_{22}^{a,b} & m_{33}^{a,b} \langle xy' \rangle_{i}, \\ & \langle x'y' \rangle_{d}^{a,b} &= (m_{12}^{a,b} & m_{43}^{a,b} & (xy')_{i}, \\ & \langle x'y' \rangle_{d}^{a,b} &= (m_{2}^{a,b} & m_{43}^{a,b} & (xy')_{i}, \\ & \langle x'y' \rangle_{d}^{a,b} &= (m_{2}^{a,b} & m_{43}^{a,b} & (xy')_{i}, \\ & \langle x'y' \rangle_{d}^{a,b} &= (m_{2}^{a,b} & m_{43}^{a,b} & (xy')_{i}, \\ & \langle x'y' \rangle_{d}^{a,b} &= (m_{2}^{a,b} & m_{43}^{a,b} & (xy')_{d}, \\ & \langle x'y' \rangle_{d}^{a,b} &= (m_{2}^{a,b} & m_{43}^{a,b} & (xy')_{i}, \\ & \langle x'y' \rangle_{d}^{a,b} &= (m_{2}^{a,b} & m_{43}^{a,b} & (xy')_{i}, \\ & \langle x'y' \rangle_{d}^{a,b} &= (m_{2}^{a,b} & m_{43}^{a,b} & (xy$$

DESY

PITZ

$$\langle xx \rangle_{\theta}^{a,b} = \cos^2 \theta \langle xx \rangle_f^{a,b} + 2\sin\theta\cos\theta \langle xy \rangle_f^{a,b} + \sin^2 \theta \langle yy \rangle_f^{a,b}, \langle xx' \rangle_{\theta}^{a,b} = \cos^2 \theta \langle xx' \rangle_f^{a,b} + \sin\theta\cos\theta \langle xy' \rangle_f^{a,b} + \sin\theta\cos\theta \langle x'y \rangle_f^{a,b} + \sin^2 \theta \langle yy' \rangle_f^{a,b} \langle x'x' \rangle_{\theta}^{a,b} = \cos^2 \theta \langle x'x' \rangle_f^{a,b} + 2\sin\theta\cos\theta \langle x'y' \rangle_f^{a,b} + \sin^2 \theta \langle y'y' \rangle_f^{a,b}. \langle xy \rangle_f^{a,b} = m_{11}^{a,b} m_{33}^{a,b} \langle xy \rangle_i + m_{11}^{a,b} m_{34}^{a|b} \langle xy' \rangle_i$$

$$+ m_{12}^{a,b} m_{33}^{a,b} \langle x'y \rangle_i + m_{12}^{a,b} m_{34}^{a,b} \langle x'y' \rangle_i$$

$$\begin{split} \langle xy' \rangle_{f}^{a,b} + \langle x'y \rangle_{f}^{a,b} &= (m_{11}^{a,b} m_{43}^{a,b} + m_{21}^{a,b} m_{33}^{a,b}) \langle xy \rangle_{i} \\ &+ (m_{11}^{a,b} m_{44}^{a,b} + m_{21}^{a,b} m_{34}^{a,b}) \langle xy' \rangle_{i} \\ &+ (m_{12}^{a,b} m_{43}^{a,b} + m_{22}^{a,b} m_{33}^{a,b}) \langle x'y \rangle_{i} \\ &+ (m_{12}^{a,b} m_{44}^{a,b} + m_{22}^{a,b} m_{34}^{a,b}) \langle x'y' \rangle_{i}, \end{split}$$

$$\begin{split} \langle x'y'\rangle_{f}^{a,b} &= m_{21}^{a,b}m_{43}^{a,b}\langle xy\rangle_{i} + m_{21}^{a,b}m_{44}^{a,b}\langle xy'\rangle_{i} \\ &+ m_{22}^{a,b}m_{43}^{a,b}\langle x'y\rangle_{i} + m_{22}^{a,b}m_{44}^{a,b}\langle x'y'\rangle_{i}. \end{split}$$

We measured for quads settings both a and b: <xx>, <xx'>, <x'x'> horizontal slit scan <yy>, <yy'>, <y'y'> vertical slit scan <xx>, <xx'>, <x'x'> rotated slit

From these measurement results, we can get <xy>, <x'y'>,<xy'>+<x'y> at f position

All elements of the transport matrices $M_{xx}^{a,b}$ and $M_{yy}^{a,b}$ are known from magnet settings. The second moments $\langle xx \rangle_{f}^{a,b}$, $\langle xx' \rangle_{f}^{a,b}$, $\langle xx' \rangle_{f}^{a,b}$, $\langle yy \rangle_{f}^{a,b}$, $\langle yy' \rangle_{f}^{a,b}$, and $\langle y'y' \rangle_{f}^{a,b}$ before rotation and $\langle xx \rangle_{\theta}^{a,b}$, $\langle xx' \rangle_{\theta}^{a,b}$, and $\langle x'x' \rangle_{\theta}^{a,b}$ after rotation can be measured. Combining Eq. (13) to Eq. (19), the solution

$$\begin{bmatrix} \Gamma_{11} \langle xy \rangle_{i} + \Gamma_{12} \langle xy' \rangle_{i} + \Gamma_{13} \langle x'y \rangle_{i} + \Gamma_{14} \langle x'y' \rangle_{i} = \Lambda_{1} \\ \Gamma_{21} \langle xy \rangle_{i} + \Gamma_{22} \langle xy' \rangle_{i} + \Gamma_{23} \langle x'y \rangle_{i} + \Gamma_{24} \langle x'y' \rangle_{i} = \Lambda_{2} \\ \Gamma_{31} \langle xy \rangle_{i} + \Gamma_{32} \langle xy' \rangle_{i} + \Gamma_{33} \langle x'y \rangle_{i} + \Gamma_{34} \langle x'y' \rangle_{i} = \Lambda_{2} \\ \Gamma_{31} \langle xy \rangle_{i} + \Gamma_{32} \langle xy' \rangle_{i} + \Gamma_{33} \langle x'y \rangle_{i} + \Gamma_{34} \langle x'y' \rangle_{i} = \Lambda_{4} \\ \Gamma_{51} \langle xy \rangle_{i} + \Gamma_{52} \langle xy' \rangle_{i} + \Gamma_{53} \langle x'y \rangle_{i} + \Gamma_{54} \langle x'y' \rangle_{i} = \Lambda_{4} \\ \Gamma_{51} \langle xy \rangle_{i} + \Gamma_{52} \langle xy' \rangle_{i} + \Gamma_{53} \langle x'y \rangle_{i} + \Gamma_{54} \langle x'y' \rangle_{i} = \Lambda_{5} \\ \Gamma_{61} \langle xy \rangle_{i} + \Gamma_{62} \langle xy' \rangle_{i} + \Gamma_{63} \langle x'y \rangle_{i} + \Gamma_{64} \langle x'y' \rangle_{i} = \Lambda_{6} \\ \end{bmatrix}$$

$$\begin{bmatrix} \Gamma_{11} & \Gamma_{12} & \Gamma_{13} & \Gamma_{14} \\ \Gamma_{31} & \Gamma_{32} & \Gamma_{33} & \Gamma_{34} \\ \Gamma_{51} & \Gamma_{32} & \Gamma_{33} & \Gamma_{44} \\ \Gamma_{51} & \Gamma_{22} & \Gamma_{63} & \Gamma_{64} \end{bmatrix} \begin{bmatrix} \langle xy \rangle_{i} \\ \langle x'y \rangle_{i} \\ \langle x'y \rangle_{i} \end{bmatrix} = \begin{pmatrix} \Lambda_{1} \\ \Lambda_{2} \\ \Lambda_{3} \\ \Lambda_{4} \\ \Lambda_{5} \\ \Gamma_{61} & \Gamma_{62} & \Gamma_{63} & \Gamma_{64} \end{bmatrix} \begin{bmatrix} \langle xy \rangle_{i} \\ \Gamma_{11} & \Gamma_{12} & \Gamma_{13} & \Gamma_{14} \\ \Gamma_{31} & \Gamma_{32} & \Gamma_{33} & \Gamma_{34} \\ \Gamma_{51} & \Gamma_{52} & \Gamma_{53} & \Gamma_{54} \\ \Gamma_{51} & \Gamma_{52} & \Gamma_{63} & \Gamma_{64} \end{bmatrix} \begin{bmatrix} \Lambda_{1} \\ \Lambda_{2} \\ \Lambda_{3} \\ \Lambda_{4} \\ \Gamma_{51} & \Gamma_{52} & \Gamma_{53} & \Gamma_{54} \\ \Gamma_{51} & \Gamma_{52} & \Gamma_{53} & \Gamma_$$

PIT

Quads settings consideration

Frobe

Condition number:

$$\kappa(\Gamma) \coloneqq \|\Gamma\|_{2} \|\Gamma^{\dagger}\|_{2}, \qquad \Gamma^{\dagger} = (\Gamma^{T}\Gamma)^{-1}\Gamma^{T}$$
nius norm of gama matrix

$$\|\Gamma\|_{2} \coloneqq \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{k} (\Gamma_{i,j})^{2}}, \qquad \|\Gamma^{\dagger}\|_{2} \coloneqq \sqrt{\sum_{i=1}^{k} \sum_{j=1}^{n} (\Gamma^{\dagger}_{i,j})^{2}}$$

The numerical stability (degeneration of the system) is better if the condition number is small. Well-conditioned matrices have condition numbers which are close to 1.0.

In order to obtain reliable evaluation results a four-dimensional emittance measurement needs:

- (i) one reference emittance measurement with 100% transmission efficiency between location i and location f to obtain projected beam parameters at location i (on-diagonal section of beam matrix of Ci).
- (ii) all quadrupoles varied numerically in a brute-force method in order to check each setting for full transmission efficiency from location i to location f, and for reasonable beam sizes on slit and screen
- (iii)All settings from safety islands are combined to determine combinations of two settings a and b corresponding to a low condition number.

Measurement is quick and data analysis is easy \rightarrow We can try several settings of quads and to find out the reliable experiment result.

For PITZ two quads plus slits scan set up

- Three slits are required: rotation 0 degree(horizontal), rotation 90 degree(vertical), arbitrary angle(not 0 and 90, such as 30 degree, 45 degree).
- For current setup, one more slit need to instal at EMSY2, with 45 degree rotation angle → easy to set up the experiment and also can use fastscan software.

Simulation studies

Initial beam 4d beam matrix, unit mm rad

Page 13

Simulation set up

5 groups quads settings

group1				
	Q3, k / m^2	Q4, k /m^2		
а	-21.5	19		
b	-15	16		
group2				
	Q3, k / m^2	Q4, k /m^2		
С	-10	8		
d	10	-12		
group3				
	Q3, k / m^2	Q4, k /m^2		
е	-10	8		
f	-21.5	19		
group4				
	Q3, k / m^2	Q4, k /m^2		
е	-25	33		
f	-22	38		
group5				
	Q3, k / m^2	Q4, k /m^2		
е	-45	43		
f	-24	40		

Condition number for each group

$$\kappa(\Gamma) \coloneqq \|\Gamma\|_2 \|\Gamma^{\dagger}\|_2, \qquad \Gamma^{\dagger} = (\Gamma^T \Gamma)^{-1} \Gamma^T$$

$$\|\Gamma\|_{2} \coloneqq \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{k} (\Gamma_{i,j})^{2}}, \qquad \|\Gamma^{\dagger}\|_{2} \coloneqq \sqrt{\sum_{i=1}^{k} \sum_{j=1}^{n} (\Gamma_{i,j}^{\dagger})^{2}}$$

Note: In simulation, for rotated slit is equavilent to rotate the beam in same angle. Beam rotated and then get $\langle xx \rangle$, $\langle xx' \rangle$ and $\langle x'x' \rangle$ in rotated coordinate.

Group 5 quads settings beam transport

Summary and out look

- Quads plus roated slit scan (slit+grid) now used for heavy ions Linac 4D emittance measruement and confirmed it works.
- Quads plus roated slit scan is easy to implement into PITZ and also the fastscan can be used. → more convenient and data processing consistent with slit scan measurement (standard emittance measurement).
- Simulation studies are done→show possible to get approxiate results with good quads settings (when condion numbet k close to 1).
- One more slit needed to install at EMSY2 with 45 degree rotation.
- Try with experiment to investigate coupling terms measurement and RMS emittance minimization with gun quads by this mehod.

Quads settings ?

- do initial emittance measurements at 0° and 90°, i.e. in ver. and hor. plane
- backtransform to quad doublet entrance
- vary in brute force way two quad strengths Q1, Q2 and check for (analytically!) :
 - 100% transmission
 - reasonable beam size at slit
 - reasonable beam size at grid
- store settings Q1, Q2 that passed this test
- build all possible pairs of settings, check their K
- pick pair with lowest *K* for measurements:
 - 1. slit at 0° with setting Q1a, Q2a
 - 2. slit at θ with setting Q1^a, Q2^a
 - 3. slit at 90° with setting Q1ª, Q2ª
 - 4. slit at θ with setting Q1^b, Q2^b

*L. Groening / GSI Darmstadt, 4d Phase Space Measurements 9/29/2017

