Beyond ellipsoidal laser shaping

Content:

Motivation

•Simulation comparison between different laser shaping

•Summary

Houjun Qian

11.01.18, PPS

> Ellipsoidal photocathode laser shaping

- 3D space charge linearization
- Complicated technology → high maintenance

coupled shaping (r-t), with rotational symmetry laser shape conservation through harmonic generation low efficiency: Gaussian \rightarrow flattop \rightarrow ellipsoidal

Central slice emittance higher than projected emittance

	Core slice emit.	100% Proj. emit.	
PITZ - 1 nC (pulsed gun)	0.5	0.4	~25% highe
LCLS2 - 0.1 nC (CW gun)	0.15	0.12	Ŭ

LCLS2 - 0.1 nC

PITZ - 1 nC Flattop → ellipsoidal: ~10% improvement on core slice emittance

Houjun Qian | Page 2

- Ellipsoidal laser shaping simplification
 - Decouple t shaping and r shaping

 $\rho(r) \propto \sqrt{1 - \left(\frac{r}{R}\right)^2}$ Half circle distribution

Longitudinal shaping: 1D

A real parabola shaping by SLM Or approximate parabola distribution by Gaussian distribution

Parabola distribution naturally exists at the core of Gaussian distribution.

- Ellipsoidal laser shaping simplification
 - Decouple t shaping and r shaping

 $\rho(r) \propto \sqrt{1 - \left(\frac{r}{R}\right)^2}$ Half circle distribution

Transverse shaping: 2D

A real half circle shaping Or cut Gaussian into half circle

> LCLS experience: (prst ab 15, 090701 (2012))

- 115 MV/m, 150 pC, pancake photoemission
- UV laser 1

Longitudinal: 3 ps stacking \rightarrow 6.5 ps 'flattop' Transverse: 1 mm BSA, uniform

UV laser 2

Longitudinal: remove stacking \rightarrow 3 ps Gaussian Transverse: 1 mm BSA, uniform

UV laser 3

Longitudinal: remove stacking \rightarrow 3 ps Gaussian Transverse: 1 mm BSA, truncated Gaussian

uniform

Truncated Gaussian

Emittance no obvious change

Emittance reduction by 25%, big UV laser efficiency improvement.

Laser shaping comparison

Different laser shapings

Ellipsoidal approx. A

A1: Long. Parabola, Transverse truncated Gaussian A2: Long. Parabola, Transverse uniform

Ellipsoidal approx. B

B1: Long. Gaussian, Transverse truncated Gaussian B2: Long. Gaussian, Transverse uniform

Flattop C

C1: Long. Flattop, Transverse truncated Gaussian C2: Long. Flattop, Transverse uniform

- Injector setup
 - Current PITZ beamline with 60 MV/m gun gradient
 - Emittance optimization at EMSY1
 - Beam peak current: ~ 45 A

Ellipsoidal & parabola laser: 6.1 ps rms, 19 ps FWHMGaussian laser:8 ps rms, 18 ps FWHMFlattop laser:22 ps FWHM, 2 ps edge

- Beam charge: 0.5 & 1 nC
- Optimization parameters

Laser BSA, Gun phase, booster gradient, solenoid focusing

slice emittance

Core since emillance								
	Ellinopidal		Parabola		Gaussian		Flattop	
	Ellipsoidai	A1	A2	B1	B2	C1	C2	
0.5 nC	0.35	0.26	0.42	0.27	0.42	0.26	n/a	
1 nC	0.51	0.38	0.73	0.37	0.73	0.4	0.57	

a alian amittanaa

Average slice emittance					
0.5 nC 1 nC					
ellipsoidal	0.28	0.40			
Parabola	0.31	0.47			
Gaussian	0.53	0.72			
flattop	0.28	0.44			

1 nC slice emittance

0.5 nC slice emittance

- ✓ Transverse shaping is key for core slice emittance, not longitudinal shaping.
- ✓ Truncated Gaussian Vs Ellipsoidal case, ~25% improvement on core slice emittance.
- ✓ Transversely truncated Gaussian is better than uniform distribution, improving core slice emittance by 30% to 50%.

> Peak current (1 nC)

> Peak current (1 nC)

Laser shaping comparison

Projected emittance for transversely truncated Gaussian laser

Flattop (truncated Gaussian) vs Ellipsoidal

0.5 nC: negligible difference 1.0 nC: 10% difference for 100% emittance

Laser shaping comparison

> XFEL case with Gaussian laser

- 12 ps at XFEL operation
- 18 ps in simulation here

	0.5 เ	nC	1 n	С	
	100% proj.	core slice	100% proj.	core slice	
uniform	0.68	0.44	1.1	0.73	
Truncated Gaussian	0.58	0.27	0.87	0.37	
improvement	15%	39%	21%	49%	
	Gaussian la	aser			
→ 1 nC, uniform	-	1 nC, truncated G	Baussian		
0.5 nC, uniform	- ×-	0.5 nC, truncated	Gaussian		
81/2 emittance (im.rad) 0.6 0.5 0.4 0.4 0.3	× × ×			Truncated Ga is better than	ussian uniform!
-15 -10	-5 0 Time	5 (ps)	10	15 Houjun Qian ∣Page 1	1

Dowell's distributions

D. Dowell shows a parabolic radial distribution can linearize transverse space charge

UV laser transverse shaping for truncated Gaussian

> A spatial filter before BSA

- Clean Gaussian distribution
- > A telescope before BSA
 - Tune Gaussian rms size, sigma=BSA/2

Summary

- Simulations show transverse shaping is the key for improving core slice emittance, not longitudinal shaping.
 - Truncated Gaussian vs uniform distribution: 30% 50% improvement
 - Truncated Gaussian vs Ellipsoidal: 25% improvement
- For 100% projected emittance
 - Truncated Gaussian vs uniform distribution

1 nC: ~20% improvement 0.5 nC: ~15% improvement

Flattop (Truncated Gaussian) vs Ellipsoidal

1 nC: ~10% difference 0.5 nC: negligible difference

For current XFEL operation with Gaussian laser

- 12 ps at XFEL, 18 ps in simulation here
- Truncated Gaussian vs uniform distribution (for 18 ps)

0.5 nC: ~39% improvement on core slice emittance, ~15% on proj. emittance 1 nC: ~49% improvement on core slice emittance, ~21% on proj. emittance

Backup slides

core emittance

	100%	95%	90%	80%
horizontal:	0.4254	0.3230	0.2758	0.2035
vertical:	0.4256	0.3224	0.2752	0.2030
long.:	75.70	54.88	43.02	29.43
core emittance				
	100%	95%	90%	80%
horizontal:	0.7333	0.4764	0.3894	0.2741
vertical:	0.7277	0.4745	0.3877	0.2729
long.:	67.33	48.82	39.21	27.13
core emittance				
	100%	95%	90%	80%
horizontal:	0.5255	0.3733	0.3136	0.2280
vertical:	0.5279	0.3738	0.3142	0.2283
long.:	68.92	51.84	41.44	28.47
core emittance				
	100%	95%	90%	80%
horizontal:	0.8719	0.5041	0.4023	0.2761
vertical:	0.8638	0.5051	0.4032	0.2763
long.:	118.6	78.53	61.21	41.87
core emittance				
	100%	95%	90%	80%
horizontal:	1.108	0.6150	0.4627	0.2984
vertical:	1.109	0.6162	0.4636	0.2987
long.:	116.8	77.38	60.41	41.25
core emittance				
	100%	95%	90%	80%
horizontal:	0.4644	0.3467	0.2950	0.2171
vertical:	0.4624	0.3461	0.2948	0.2172
long.:	73.21	54.06	45.67	33.04

Ellipsoidal

Parabola-uniform

Parabola-truncated Gaussian

Gauss-truncated Gaussian

Gauss-uniform

Flattop-truncated Gaussian Houjun Qian | Page 15

Backup slides

core emittance

	100%	95%	90%	80%
horizontal:	0.2989	0.2356	0.2016	0.1485
vertical:	0.3008	0.2372	0.2028	0.1495
long.:	45.18	32.97	25.87	17.67
core emittance				
	100%	95%	90%	80%
horizontal:	0.4639	0.3090	0.2532	0.1809
vertical:	0.4669	0.3090	0.2529	0.1808
long.:	46.19	34.05	27.07	18.64
core emittance				
	100%	95%	90%	80%
horizontal:	0.3514	0.2523	0.2103	0.1519
vertical:	0.3517	0.2522	0.2101	0.1516
long.:	50.12	37.23	29.48	20.35
core emittance				
	100%	95%	90%	80%
horizontal:	0.5840	0.3385	0.2682	0.1842
vertical:	0.5840	0.3397	0.2695	0.1852
long.:	92.80	58.64	45.87	31.40
core emittance				
	100%	95%	90%	80%
horizontal:	0.6766	0.3898	0.2892	0.1882
vertical:	0.6796	0.3907	0.2891	0.1876
long.:	93.18	59.02	46.11	31.53
core emittance				
	100%	95%	90%	80%
horizontal:	0.3077	0.2261	0.1917	0.1412
vertical:	0.3064	0.2250	0.1907	0.1402
long.:	52.60	38.18	32.22	23.03

Ellipsoidal

Parabola-uniform

Parabola-truncated Gaussian

Gauss-truncated Gaussian

Gauss-uniform

Flattop-truncated Gaussian Houjun Qian | Page 16

