Pulse Shape Preservation in a Nonlinear Conversion Process

The ELLA2 Program

- GOAL: Reducing electron beam emittance by 3D laser pulse shaping
- KEY: Temporal control via time-wavelength correlation in chirped laser pulses

Beam overview for 3 different laser shapes (Zboo=3.1m)

Christian Koschitzki | ELLA 2 Program | 14.12.2017 | Page 2

Example for the key principles: The spectrograph

Imaging throughout the system

For every image image plane at x distance to a lens we need an additional distance 3*x

Cylindical lenses transport the image of only one plane (X or Y)

3D masking with Volume Bragg Grating

Cutting a Flat Top in the spectrum

Imaging through the volume Bragg gratings

- Pulses are recompressed after dual VBG
- But the cutting inside the VBG is not done properly by p imaging mismatch
- Need to cut a sheered ellipse for angled setup

Imaging in a symmetric VBG compensation scheme

- Recompressed Beam
- Correct Imaging
- No sheered ellipse

System layout

Conversion

Sum Frequency Generation (SHG): $\omega_1 + \omega_1 = \omega_2$ Conversion rate is proportional to Intensity² and Volume

A laser pulse with pulse energy *E* and duration τ converts 1% of the photons within a time *t* = 1mm/c

E doubles \rightarrow con. rate quadruples \rightarrow efficiency doubles

 τ halfs \rightarrow con. rate quadruples but Volume is half \rightarrow efficiency doubles

$$\eta_{SHG} \sim \frac{E * L_{cr}}{\tau * w_f^2}$$
$$E_2 \sim \frac{E^2 * L_{cr}}{\tau * w_f^2}$$

Pulse energy limit

 $E * \text{Rep} \le 1 \text{kW} (20 \text{W})$

 $E = 200 \ \mu J \ (100 \ kHz)$

Focusing limit

$$w_f = C \frac{\lambda}{N_A}$$
 with $N_A = \frac{D}{f} > 1$

Pulse duration limit

 $\tau * \Delta \omega \le 0.3$

Fourier Transformation in Optics

Gaussian shape stability under transformation

Frequency Conversion (FC) with compressed/focused beam in unsaturated regime and perfect phase matching: $FC \rightarrow IFT(FT(f(x))^2)$

Flattop under FC transformation

Initial

150

200

Converted

60

50

40

30

20

10

0

50

Fourier space

100

Conversion is proportional to Intensity².

Lowest part of distribution is always squared.

Conversion in

Fourier Plane

suppresses low

amplitude high

frequency parts.

Christian Koschitzki | ELLA 2 Program | 14.12.2017 | Page 13

Flattop under FC transformation

Conversion is proportional to Intensity².

Lowest part of distribution is always squared.

Fourier space

Conversion in Fourier Plane suppresses low amplitude high frequency parts.

Flattop under FC transformation

Christian Koschitzki | ELLA 2 Program | 14.12.2017 | Page 15

Compensating with predistortion

Has too low cutting efficiency!!

Shape preservation is a trade off with energy efficiency!!!!

$$\eta_{SHG} \sim \frac{E * L_{cr}}{\tau * w_f^2} \qquad E_2 \sim \frac{E^2 * L_{cr}}{\tau * w_f^2}$$

Can we make crystal length long?

- Spatial Walkoff
- Group Velocity mismatch
- Low conversion bandwidth

NO

CHI2D simulation of SHG

Chirp and spatial flat top conversion (IAP RAS method)

 θ is adjusted such that every wavelength gets tuned to the right phase matching

Solution for conversion bandwidth

Trade off between resolution and conversion efficiency \rightarrow find optimum d1,d2,L_{cr} Ultimately for a given resolution and efficiency a minimum pulse energy may be required. Should start investigation as soon as possible?

Emittance growth due to non perfect border width

- Modified intensity distribution for each border width (temporal and radial) has been put into ASTRA simulations for electron beam tracking up to EMSY1
- Parameters responsible for bunch rms emission time (initial bunch length) and laser beam transverse projection onto the z axis were kept unchanged during the studies

Strong effect of imperfections in temporal direction on transverse emittance

10-15% overall imperfections in 3D laser shape are still acceptable

Transverse emittance growth (in %) vs. temporal (δ_t) and radial (δ_r) border sharpness parameters.

Conclusion

- We don't have the full recipe!!! No workhorse system for electron experiments in 2018.
- Chirp technique must also provide ellipsoidal pulses. Only temporal shaping is easier with pulse stacking.
- Maybe need additional amplifier stage with shape preservation
- Next Steps: Proof of principle for stable red ellipsoidal Investigation of Resolution / Conversion Eff. Trade Off
- Improve communication with collaborators.
- > Is \leq 30% (?) emittance improvement worth it?

Thank you for your attention

