Pulse Shape Preservation in a Nonlinear Conversion Process

The ELLA2 Program

GOAL: Reducing electron beam emittance by 3D laser pulse shaping KEY: Temporal control via time-wavelength correlation in chirped laser pulses

Beam overview for 3 different laser shapes (Zboo=3.1m)

Christian Koschitzki | ELLA 2 Program | 14.12.2017 | Page 2

Example for the key principles: The spectrograph

Imaging throughout the system

For every image image plane at x distance to a lens we need an additional distance 3^{*} x

Cylindical Ienses transport the image of only one plane (X or Y)

3D masking with Volume Bragg Grating

Maximum theoretical cutting efficiency: 11.5 \%

Cutting a Flat Top in the spectrum

Imaging through the volume Bragg gratings

Modified grating does spatial modulation and thus requires imaging.

- Pulses are recompressed after dual VBG
- But the cutting inside the VBG is not done properly by pimaging mismatch
- Need to cut a sheered ellipse for angled setup

Imaging in a symmetric VBG compensation scheme

- Recompressed Beam
- Correct Imaging
- No sheered ellipse

System layout

Conversion

Sum Frequency Generation (SHG): $\omega_{1}+\omega_{1}=\omega_{2}$ Conversion rate is proportional to Intensity ${ }^{2}$ and Volume

A laser pulse with pulse energy E and duration τ converts 1% of the photons within a time $t=1 \mathrm{~mm} / \mathrm{c}$
E doubles \rightarrow con. rate quadruples \rightarrow efficiency doubles
τ halfs \rightarrow con. rate quadruples but Volume is half \rightarrow efficiency doubles

$$
\begin{gathered}
\eta_{S H G} \sim \frac{E * L_{c r}}{\tau * w_{f}^{2}} \\
E_{2} \sim \frac{E^{2} * L_{c r}}{\tau * w_{f}^{2}}
\end{gathered}
$$

Focusing limit

$$
w_{f}=C \frac{\lambda}{N_{A}} \text { with } N_{A}=\frac{D}{f}>1
$$

Pulse energy limit
$E * \mathrm{Rep} \leq 1 \mathrm{~kW}(20 \mathrm{~W})$
$E=200 \mu \mathrm{~J}(100 \mathrm{kHz})$

Fourier Transformation in Optics

Gaussian shape stability under transformation

$$
f_{g}(x)=A e^{-\frac{\left(x_{0}-x\right)^{2}}{2 \sigma_{g}{ }^{2}}} \quad \stackrel{\text { Squared }}{ } \quad\left(f_{g}(x)\right)^{2}=f_{g}(x) \text { with } \sigma=\frac{\sigma_{g}}{2}
$$

Fourier Transf.
$\square F T\left(f_{g}(x)\right)=f_{g}(x)$ with $\sigma=\frac{1}{\sigma_{g}}$

Frequency Conversion (FC) with compressed/focused beam in unsaturated regime and perfect phase matching: $F C \rightarrow \operatorname{IFT}\left(F T(f(x))^{2}\right)$

Frequency
Conversion

$$
F C\left(f_{g}(x)\right)=f_{g}(x) \text { with } \sigma=\frac{\sigma_{g}}{2}
$$

Flattop under FC transformation

Conversion is proportional to Intensity ${ }^{2}$.

Lowest part of distribution is always squared.

Conversion in Fourier Plane suppresses low amplitude high frequency parts.

Flattop under FC transformation

Conversion is proportional to Intensity ${ }^{2}$.

Lowest part of distribution is always squared.

Conversion in Fourier Plane suppresses low amplitude high frequency parts.

Flattop under FC transformation

Conversion is proportional to Intensity².

Lowest part of distribution is always squared.

2 consecutive conversions

Conversion in Fourier Plane suppresses low amplitude high frequency parts.

Compensating with predistortion

Has too low cutting efficiency!!

Shape preservation is a trade off with energy efficiency!!!!

$$
\eta_{S H G} \sim \frac{E * L_{c r}}{\tau * w_{f}^{2}} \quad E_{2} \sim \frac{E^{2} * L_{c r}}{\tau * w_{f}^{2}}
$$

Can we make crystal length long?

- Spatial Walkoff
- Group Velocity mismatch
- Low conversion bandwidth NO

CHI2D simulation of SHG

Chirp and spatial flat top conversion (IAP RAS method)

θ is adjusted such that every wavelength gets tuned to the right phase matching

Solution for conversion bandwidth

Trade off between resolution and conversion efficiency \rightarrow find optimum d1, d2, L_{cr} Ultimately for a given resolution and efficiency a minimum pulse energy may be required. Should start investigation as soon as possible?

Emittance growth due to non perfect border width

- Modified intensity| distribution for each border width (temporal and radial) has been put into ASTRA simulations for electron beam tracking up to EMSY1
- Parameters responsible for bunch rms emission time (initial bunch length) and laser beam transverse projection onto the z axis were kept unchanged during the studies

Strong effect of imperfections in temporal direction on transverse emittance

10-15\% overall imperfections in 3D laser shape are still acceptable

Transverse emittance growth (in \%) vs. temporal ($\bar{\delta}_{\mathrm{t}}$) and radial (\bar{o}_{r}) border sharpness parameters.

Conclusion

> We don't have the full recipe!!! No workhorse system for electron experiments in 2018.
> Chirp technique must also provide ellipsoidal pulses. Only temporal shaping is easier with pulse stacking.
> Maybe need additional amplifier stage with shape preservation
> Next Steps: Proof of principle for stable red ellipsoidal
Investigation of Resolution / Conversion Eff. Trade Off
$>$ Improve communication with collaborators.
$>$ Is $\leq 30 \%$ (?) emittance improvement worth it?

> Thank you for your attention

