Emission of Space Charge Dominated E-Beams in Pancake Regime

Y. Chen, PPS, DESY Zeuthen site, December 14th 2017

Content:

- Emission characterization with SG bunches
- · Benchmark of simulation results
- Convergence studies
- Summary
- Tolerance studies (backup)
- Emittance comparison: trans. symmetric vs. trans. asymmetric (backup)

Cathode laser Gaussian temporal profiles at PITZ:

Short Gaussian (**SG**): **~2ps** FWHM Long Gaussian (**LG**): **~11ps** FWHM SG FWHM ~ 2 ps

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Introduction

Why and What

□ Why Short Gaussian (SG)?

 \rightarrow More confident about temporal cathode (laser) pulse shape \rightarrow Impacts of pulse shape on emission presumably small

□ Why different codes?

- \rightarrow Benchmark available simulation tools
- \rightarrow Try to "select" suitable one for further emission model implementation

□ Why convergence studies?

- \rightarrow Better time resolution needed for short bunches
- \rightarrow Strong space charge effect numerically difficult to resolve

Reminder: best emittance usually at QE-SC transition regime (one of the main goals for emission studies), not fully understood yet

DESY. | Emission | Ye Chen | PPS | Zeuthen, December 14th, 2017

Raw Data

Conditions:

Cath Laser: MBI SG (2ps FWHM, 0.85ps RMS), BSA=2.4mm RF: Ecath=60MV/m, Gun @ MMMG (0deg)

Photocathode laser at VC2 (cathode):

Beam Aspect Ratio and PPC model

□ Extensively used PPC model for short bunches in RF gun

$$Q_{\rm sat} = \sigma_{\rm sat} \pi R^2 \cong \epsilon_0 E_0 \pi R^2$$

1. "capacity" of effective diode 2. 2 ps bunch shorter than 1 deg RF \rightarrow constant E₀ 3. R: emission radius, presumably R ~ laser spot size

By the end of the laser pulse the beam extends a length Δz into effective diode:

$$\Delta z_e = \frac{eE_0}{2m} \Delta t^2 \quad \sim 1.5 \text{e-}05 \text{ m}$$

 $\Delta \mathbf{z}_{\mathbf{e}} \mathrel{<\!\!\!\!<} \mathbf{R} \rightarrow \mathbf{Pancake model applicable}$

Use PPC with variable radius of emission layer

Apply PPC model with space charge modified emission radius for the best fitting to the measurement data

Page 7

Use PPC with variable radius of emission layer

Apply PPC model with space charge modified emission radius for the best fitting to the measurement data

LT	Reff [mm]	Error	
31%	1.305	0.0892	
41%	1.335	0.0769	
51%	1.345	0.0670	
61%	1.360	0.0597	
71%	1.375	0.0568	
81%	1.385	0.0517	
91%	1.390	0.0556	

Fit measurements @ 3 different gun phases simultaneously

~6.5% change in emission radius while varying LT

Error = $\sum_{k} \frac{abs(Q_{fit,k} - Q_{meas,k})}{c}$

- If one considers variable sizes of space charge layer formed in front of cathode, PPC model may explain the short bunch case
- □ To be checked for different BSA sizes
- Cross checking with simulated beam sizes for different injected bunch charges

Initial Trans. Particle distributions

KRACK code written by Martin Dohlus, DESY Hamburg

□ KRACK code

 \rightarrow see <u>http://www.desy.de/fel-beam/data/talks/files/2017.00.31 11 26 26 53 1 NonUnifCathode.pdf</u> \rightarrow see <u>http://www.desy.de/fel-</u> <u>beam/data/talks/files/2017.10.15 13 34 34 49 1 Dohlus problem with poisson S.pdf</u>

Page 1

ASTRA Trans. Uniform vs. ASTRA Trans. Asymmetric vs. KRACK

Comparisons (first results)

Qbunch

Uniform motion average frame (UMAF) simulations

Trans. Asymmetric

Trans. Symmetric

UMAF simulations by Steffen Schmid, TEMF

Page 13

Codes

General features of interests

CODE		Space Charge	Image Charge during emission	RF fields and static magnetic fields	Numerical approx.
ASTRA	2D		Yes	Paraxial approx. (field map possible)	Poisson solver, β constant, particle-in-cell…
	3D		No		
KRACK	3D		Yes	(not sure) Paraxial approx. (field map possible)	(not sure) Similar to ASTRA
CST Particle Studio	3D	Yes	Yes	Full fields	Maxwell solver, full EM fields, particle-in-cell
UMAF	2D		Yes	Paraxial approx. (field map possible)	Particle-particle / particle- mesh, β constant…
Lienard-Wiechert	3D		Yes	Paraxial approx. (field map possible)	Full Lienard-Wiechert fields, retarded interaction, particle- particle/particle-mesh

UMAF: uniform motion average frame code

Summary

- ✓ Saturation charge predicted by **PPC** model **lower than measured charge in pancake regime**
- ✓ Strong space charge induced bunch expansion may vary effective emission radius of PPC model
- ✓ **PPC model with variable emission radius may explain** the measurements for SG cases
- ✓ Effective emission radius grows by ~6% as Qbunch increasing; Seems comparable with simulated beam size growth tendency; To be checked for other measurement data
- ✓ Simulations with different codes (without emission model) could not yet explain the emission curve, especially in the QE-SC transition regime
- ✓ If transverse beam dynamics is fine, can we suspect longitudinal dynamics might not be fully modeled by the codes?
- Convergence of ASTRA, KRACK simulations done; Results of other codes to be further checked vs. numerical parameters
- ✓ Tolerance studies (pulse shape/length/RF phase) did not show improvements on the nonlinear dependency of emission curve on the laser pulse energy

Tolerance Studies

2.5 ^{×10⁻⁹}

0.85 RMS SG, MMMG ±1 deg

Tolerance Studies

Varying temporal pulse shapes

□ Using inverted parabola (IP) and truncated Gaussian (TG) profiles

UMAF simulations by Steffen Schmid, TEMF

