Emittance improvements of CW photoinjector by ellipsoidal shaping

Content:

- Motivation
- •Proj. emittance decomposition of photoinjector
- •CW photoinjector layout and performance
- •Ellipsoidal shaping effect for CW injector at 100 pC
- Discussions
- Summary & outlook

Houjun Qian

09.11.17, PITZ Physics Seminar

Motivations

Injector R&D Program

Big impact of improved injectors for LCLS-II CuRF and LCLS-II-HE SCRF, extending SCRF reach out beyond 20 keV

Projected emittance decomposition

> C. Mitchell, arXiv:1509.04765

$$\varepsilon_{100\%} = \sqrt{\varepsilon_{slice}^2 + \Delta \varepsilon_{mismatch}^2 + \Delta \varepsilon_{misalign}^2}$$

- Average slice emittance
- Emittance due to slice twiss parameter mismatch
- Emittance due to slice centroid misalignment

Mismatch emittance

Misalignment emittance

- For ideal photoinjecotor simulations
 - no beam-beamline misalignment, no RF coupler kick

$$\varepsilon_{100\%} = \sqrt{\varepsilon_{slice}^{2} + \Delta \varepsilon_{mismatch}^{2}}$$
$$\varepsilon_{slice} = \sqrt{\varepsilon_{th}^{2} + \Delta \varepsilon_{slice}^{2}}$$

Transverse beam brightness of photoinjector

Maximize photoemission beam brightness at cathode

 $B_{\perp}^{pancake} \sim \frac{Q}{\varepsilon_{x}\varepsilon_{y}} \propto \frac{E_{0}}{\sigma_{p_{\perp}}^{2}} \qquad \qquad B_{\perp}^{cigar} \propto \frac{E_{0}^{3/2}t_{laser}}{\sqrt{R}\sigma_{p_{\perp}}^{2}}$

- High gun gradient
- Iow thermal emittance cathode
- Laser BSA and pulse length tuning
- > CW gun VS pulsed gun: 5-20 MV/m vs 60-120 MV/m
 - Improve CW gun gradient: targeting 20-40 MV/m
 - Cigar photoemission (40-60 ps)
 - trade peak current for transverse emittance
 - Low thermal emittance photocathodes with ~ps second response time
 - Reduce energy gap between photon energy and 'work function'
 - Reduce cathode surface roughness
 - Cool cathode to cryo temperature

Transverse beam brightness of photoinjector

Conservation of photoemission beam brightness

- Emittance growth from slice mismatch: emittance compensation
 - gun drift optimization, solenoid scan, booster gradient scan...
- Emittance growth from slice misalignment: slice dependent dipole kick
 - laser BBA, solenoid alignment, booster steering free, gun coupler kick...
- Slice emittance growth
 - Nonlinear space charge effect
 - X & Y phase space coupling
 - Minimize quad field error in solenoid or RF field asymmetry
 - Solenoid spherical aberration: $\delta \epsilon \propto \sigma_{beam}^4$

CW gun VS pulsed gun: 0.4 - 4 MV vs 4 - 6 MV

- Higher space charge effect: Gaussian laser → flattop → ellipsoidal?
- Larger beam size
 - Solenoid aberration
 - improve beam focusing, improve solenoid design
 - Emittance growth more sensitive to all practical errors

CW photoinjector layouts

CW photoinjector layouts

DC gun photoinjector (Jlab, Cornell)

> NC VHF gun photoinjector (LCLS-II)

CW injector optimizations

- Pulsed injector optimizations:
 - Beam peak current → Laser pulse length
 - Injector layout \rightarrow Emittance oscillation scan \rightarrow Solenoid strength, drift length
 - Min emittance scan → Laser BSA
- > CW injector based on DC gun and VHF gun
 - Beam peak current → Laser pulse length, buncher location, voltage & phase
 - Injector layout → Emittance oscillation scan → two solenoids, different ways of beam peak current
 - Min emittance scan → Laser BSA
- Tuning knobs
 - Pulsed injector (7): laser(2), gun(1), solenoid(1), booster(2)
 - CW injector with buncher (13): laser(2), gun(1), solenoid(3), buncher(3), booster(4)

Multi-Objective Genetic Optimizer (MOGA)

- A and B dominate C, but A and B don't dominate each other.
- The algorithm finds a front of non-dominated solutions.
- The final result is not a single solution

APEX has developed an optimization tool based on NSGA-II (Non-dominated Sorting Genetic Algorithm II)

Description of NSGA-II can be found in http://www.iitk.ac.in/kangal/Deb_NSGA-II.pdf

Current state of the arts performance

- > Cornell injector measurements
 - 395 kV (4 ~ 8 MV/m)
 - NaKSb, 520 nm, ~0.52 um.rad/mm

Q (pC)	100% ϵ_n	95% ϵ_n	Cathode ϵ_n
20	0.22 (0.24) 0.37 (0.39)	0.18 (0.19)	0.12 (0.11) 0.24 (0.23)
300	0.77 (0.39)	0.50 (0.52)	0.24 (0.23)

Current state of the arts performance

> APEX photoinjector (as of 2016.03)

- Thermal emittance at 20 MV/m
 - K₂CsSb, 515 nm: 0.5-0.6 um.rad/mm rms
 - Cs2Te, 266 nm: ~0.7 um.rad/mm

20 pC measurement

Emittance improvement of CW photoinjector

> Higher gradient and higher gun voltage

- NC cavity: bigger cavity with lower frequency, 100~130 kW (APEX)
- SRF cavity: L-band or VHF-band
- Low thermal emittance cathode
- Laser shaping
 - Flattop shaping \rightarrow Ellipsoidal shaping
- Solenoid spherical aberration
 - Better beam focusing
 - Better solenoid design

Photoinjector optimization setup

Simulation setup for 100 pC

- Flattop laser (2 ps rise time) vs Ellipsoidal laser
- NC VHF band gun based injector

Laser	radius and duration variable
gun	20 MV/m, 750 kV, phase variable
buncher	<240 kV, voltage and variable variable
solenoid 1&2	strength variable (APEX solenoid)
module	phase fixed to crest acceleration 1 & 4 variable, 2 & 3 off, 5-8 fixed to 32 MV/m
layout	Using LCLS-II injector layout

SC L band gun based injector (no dedicated velocity compression)

Laser	radius and duration variable		
1.5 cell gun	40 MV/m, MMMG phase		
solenoid	Strength variable (HZDR solenoid)	L-band SRF gun	8-Cavity CW SC module
modulo	phase fixed to crest acceleration		
module	1 & 4 variable, 2 & 3 off, 5-8 fixed to 32 MV/m		•••••
layout	SC solenoid 0.5 m (HZB), cavity #1 center at 4.5 m		

NC VHF band gun

Comparison between flattop and ellipsoidal laser

- Flattop \rightarrow ellipsoidal shaping : 33% reduction on emittance (100 pC, 20 A)
- Need both ellipsoidal shaping and better cathodes to achieve 0.1 um.rad

$$\varepsilon_{100\%} = \sqrt{\varepsilon_{th}^2 + \Delta \varepsilon_{slice}^2 + \Delta \varepsilon_{mis}^2}$$

SC L band gun

Comparison between flattop and ellipsoidal laser

- Flattop \rightarrow ellipsoidal shaping: 10% reduction on emittance (100 pC, 5 A)
- Better cathode (1 → 0.5 um.rad): 32% reduction on emittance

$$\varepsilon_{100\%} = \sqrt{\varepsilon_{th}^2 + \Delta \varepsilon_{slice}^2 + \Delta \varepsilon_{mis}^2}$$

Houjun Qian | PITZ Betriebsseminar | 20.06.2017 | Page 15

Solenoid abberation

Solenoid spherical abberation

• 3rd order effect
$$r' = \left(\frac{1}{f}\right)_{sol}r + \alpha r^3$$

Focusing strength

$$\left(\frac{e}{f}\right)_{\text{sol}} = \left(\frac{e}{2mc\beta\gamma}\right)^2 \int B_z^2 dz \qquad \alpha = \frac{1}{4} \left(\frac{e}{2mc\beta\gamma}\right)^2 \int \left(\frac{\partial B}{\partial z}\right)^2 dz$$

• Spherical abberation $C_s = \frac{2\alpha}{1/f}$

$$C_{\rm s} = \left(\frac{1}{2} \int_{-\infty}^{+\infty} B_z^{\prime 2} \mathrm{d}z\right) / \left(\int_{-\infty}^{+\infty} B_z^2 \mathrm{d}z\right)$$

Assuming solenoid model

$$B_z(z) = B_0\left(\frac{1}{1+(z/a)^n}\right) \longrightarrow C_{s,n} = \frac{(n+1)}{12}\frac{1}{a^2}$$

Solenoid comparison

PITZ $C_s = 33 m^{-2}$ APEX $C_s = 99 m^{-2}$ HZDR $C_s = 466 m^{-2}$

Spherical abberation

 $2a \sim \text{FWHM of solenoid field}$ \rightarrow bigger bore, or longer $n \sim$ sharpness of fringe field slope \rightarrow remove cap

inar | 20.06.2017 | Page 16

Solenoid abberation

> Emittance growth
$$\Delta \varepsilon = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle} - \langle xx' \rangle^2 = \kappa \alpha \sigma_x^4 = \frac{\kappa}{2f} C_s \sigma_x^4$$

• Gaussian distribution
$$\kappa = \sqrt{6} \approx 2.4$$

• Ellipsoidal distribution
$$\kappa = \sqrt{\frac{200}{147}} \approx 1.2$$

Uniform distribution $\kappa = 1$

Emittance growth evaluation (flattop laser, 1 um.rad/mm case)

mm

SC gun + HZDR solenoid APEX gun + APEX solenoid RMS beam size at solenoid 2.5 3.5

Gaussian distribution	0.40	0.20	mm.mrad
Ellipsoidal distribution	0.19	0.10	mm.mrad
Uniform distribtuion	0.16	0.08	mm.mrad
Real distribution	0.20	N/A	mm.mrad
Emittance decomposition	0.33	0.15	mm.mrad

Photoemission in CW guns

> Cathode space charge field during photoemission

APEX gun injector (100 pC)

Photoemission in all cases are not close to saturation! What is limiting beam brightness at cathode? Houjun Qian | PITZ Betriebsseminar | 20.06.2017 | Page 18

Summary

For NC VHF gun (20 MV/m) based injector

- Ellipsoidal shaping improves 100 pC beam emittance by 33%
- 0.1 um.rad, 20 A beam is possible with current gun if both ellipsoidal shaping and low thermal emittance cathode are available.
- For L-band SC gun (40 MV/m) based injector
 - HZDR solenoid spherical abberation is big.
 - Ellipsoidal shaping effect is not clear, further injector optimizations are needed.
- In contrast to pulsed high gradient injectors, optimized solutions of CW injectors are not close to photoemission saturation.
- Slice emittance growth in CW injector should be analyzed in more details.

